Acyclic Coloring on Extended Duplicate Graph of Star Graph Families

C. Shobana Sarma¹, K. Thirusangu²

¹Department of Mathematics, Bharathi Women’s College (Autonomous)
Chennai – 600 108, India

²Department of Mathematics, S.I.V.E.T. College
Chennai –600 073, India

Abstract—In this paper we present acyclic coloring and acyclic chromatic number of middle graph, central graph and total graph of the extended duplicate graph of the star graphs denoted by M(EDG(K₁,n)), C(EDG(K₁,n)) and T(EDG(K₁,n)) respectively.

Keywords—Middle graph, central graph, total graph, acyclic coloring, extended duplicate graph, star graph.

I. INTRODUCTION

The proper coloring of a graph is the coloring of the vertices of G such that no two adjacent vertices of G are assigned the same color. Throughout this paper, by a graph we mean a finite, undirected, simple graph and the term coloring is used to denote vertex coloring of graphs.

A proper vertex coloring in which the subgraph induced by any two colors does not contain a cycle is called an acyclic coloring of G. The notion of acyclic chromatic number was introduced by B.Grunbaum [5] in 1973. The least number of colors required to color the graph acyclically is called acyclic chromatic number of a graph G and is denoted by a(G).

The acyclic and star coloring of middle, central and total graphs of some class of graphs have been studied in the literature [1,2,6,7,8].

A complete bipartite graph K₁,n is a star graph with n+1 vertices and n edges.

The concept of extended duplicate graph was introduced by Thirusangu, et al. [10].

A duplicate graph of G is DG = (V₁, E₁) where the vertex set V₁ = V ⊔ V′ and V ∩ V′ = ∅ and f : V → V′ is bijective (for v ∈ V, we write f(v) = v′) and the edge set E₁ of DG is defined as follows. The edge uv is in E₁ if and only if both uv′ and u′v are edges in E₁. The extended duplicate graph of DG, denoted by EDG, is defined as, adding an edge between any vertex from V to any other vertex in V′, except the terminal vertices of V and V′. For convenience, we take v₂ ∈ V and v₂′ ∈ V and thus the edge v₂v₂′ is formed.

The extended duplicate graph of star graph, denoted by EDG(K₁,n) is obtained from the duplicate graph of star by joining the vertices v₁ and v₁′.

The graph obtained from G by inserting a new vertex into every edge of G and by joining those pairs of these new vertices with edges which lie on adjacent edges of G is called the Middle graph of G, denoted by M(G)[3].

The graph obtained from G by subdividing each edge exactly once and joining all the non-adjacent vertices of G is called the Central graph of G and is denoted by C(G)[9].

The Total graph of G, is a new graph whose vertex set is the union of vertex and edge set of G and two vertices of T(G) are adjacent if they are either two adjacent vertices or two adjacent edges or an incident vertex with an edge of G and is denoted by T(G)[3,4].
II. ACYCLIC COLORING OF M(EDG(K_1,n))

Theorem 1. For any extended duplicate graph of the star graph EDG(K_{1,n}), the acyclic chromatic number, a[M(EDG(K_{1,n})] = n+1, n ≥ 3.

Proof.

Consider the extended duplicate graph of the star graph EDG(K_{1,n}) with V(EDG(K_{1,n})) = \{v, v', v_1, v_1', v_2, v_2', ..., v_n, v_n'\}. By the definition, in middle graph M(EDG(K_{1,n})), edge v'v_k is subdivided by the vertex x_k, vv'_k is subdivided by x_{nk+1} for 1 ≤ k ≤ n and v_1v'_1 is subdivided by x_{n+1} in M(EDG(K_{1,n})). That is, V(M(EDG(K_{1,n}))) = \{v, v'_1, v_1, v_1', v_2, v_2', ..., v_n, v_n'\}.

The vertices are properly colored as follows. The color C_1 is assigned to v, v'_1, v_1 and v_1' for 1 ≤ i ≤ n. The color C_{i+1} is assigned to x_i and x_{ni+1} for 1 ≤ i ≤ n. Assign color C_3 to the vertex x_{n+1}.

As M(EDG(K_{1,n})) contains a clique of order n+1, we need at least (n+1) colors for the proper coloring. We show that the above coloring is acyclic.

![Diagram](image_url)

Case 1. Consider the color class <C_1, C_i> for 2 ≤ k ≤ n+1, the subgraph induced by these color classes is the union of path P_1 and (2n-1) pendant vertices.

Case 2. Consider the color class <C_i, C_j> for 2 ≤ i ≤ j ≤ n+1, the subgraph induced by these color classes is path P_2 and the union of paths P_1.

In both the cases, the induced subgraphs have no cycles hence the coloring is acyclic and therefore, a[M(EDG(K_{1,n})]] = n+1, n ≥ 3.

III. ACYCLIC COLORING OF C(EDG(K_{1,n}))

Theorem 2. For any extended duplicate graph of the star graph EDG(K_{1,n}), the acyclic chromatic number, a[C(EDG(K_{1,n}))] = 2n+1, n ≥ 3.

Proof.

Consider the extended duplicate graph of the star graph EDG(K_{1,n}) with V(EDG(K_{1,n})) = \{v, v', v_1, v_1', v_2, v_2', ..., v_n, v_n'\}. In central graph C(EDG(K_{1,n})), by definition edge v'v_k is subdivided by x_k, vv'_k is subdivided by x_{nk+1} for 1 ≤ k ≤ n, and v_1v'_1 is subdivided by x_{n+1} in C(EDG(K_{1,n})). That is, V(C(EDG(K_{1,n}))) = \{v, v'_i / 1 ≤ i ≤ n\} ∪ \{x_i, x_{ni+1} / 1 ≤ i ≤ n\} ∪ \{v, v'_1\} ∪ \{x_{n+1}\}.

The vertices are properly colored as follows. Assign the color C_1 to v and v'. Assign the color C_i to v_i for 2 ≤ i ≤ n. Assign C_{ni} to v'_i for 1 ≤ i ≤ n and the color C_{2ni+1} to v. The color C_2 is assigned to the newly introduced vertices x_i for 1 ≤ i ≤ 2n+1, i ≠ 2 and the color C_3 is assigned to x_2.
As $\text{C}(\text{EDG}(K_{1,n}))$ contains a clique of order $2n+1$, minimum $(2n+1)$ colors are required for its proper coloring. To prove that the above said coloring is acyclic. In the above said coloring, the color classes C_k, $4 \leq k \leq 2n+1$ never induce a cycle (it occur only once in the coloring procedure). The subgraphs induced by $<C_i, C_j>$ for $i=1, 2$ and $j=2, 3$ with $i < j$, is as follows.

Case 1. Consider the color class $<C_1, C_2>$, the subgraph induced by these color classes is the path P_5 and some pendant vertices.

Case 2. Consider the color class $<C_1, C_3>$, the subgraph induced by these color class is the union of path P_2 and P_3.

Case 3. Consider the color class $<C_2, C_3>$, the subgraph induced by these color classes is a path P_4 and some pendant vertices.

In all the cases, the induced subgraphs has no cycles hence the coloring is acyclic and therefore, $a[C(\text{EDG}(K_{1,n}))] = 2n+1$, $n \geq 3$.

IV. ACYCLIC COLORING OF T(EDG(K_{1,n}))

Theorem 3. For any extended duplicate graph of the star graph EDG(K_{1,n}), the acyclic chromatic number, $a[T(\text{EDG}(K_{1,n}))] = n+1$, $n \geq 3$.

Proof. Consider the extended duplicate graph of the star graph EDG(K_{1,n}) with $\text{V}(\text{EDG}(K_{1,n})) = \{v, v', v_1, v'_1, v_2, v'_2, \ldots, v_n, v'_n\}$. In total graph $T(\text{EDG}(K_{1,n}))$, by definition each edge $v'v_k$ is subdivided by the vertex x_k, vv'_k is subdivided by x_{nk+1} for $1 \leq k \leq n$ and $v_i v'_i$ is subdivided by x_{n+1} in $T(\text{EDG}(K_{1,n}))$. The vertices $\{x_1, x_2, \ldots, x_{n+2}, x_{n+3}, \ldots, x_{2n+1}, v\}$ induce a clique of order $n+1$ in $T(\text{EDG}(K_{1,n}))$. That is, $\text{V}(T(\text{EDG}(K_{1,n}))) = \{v, v', v_1, v'_1, v_2, v'_2, \ldots, v_n, v'_n\}$.

Now assign a proper coloring to these vertices as follows. The color C_i is assigned to the vertices x_i and x_{n+i+1} for $i = 1, 2, \ldots, n$. Assign the color C_{n+1} to the vertices v and v'. Assign the color C_i to v_i and v'_i for $2 \leq i \leq n$. The Color C_2 is assigned to v_1 and color C_4 is assigned to v'_1. The Color C_3 is assigned to the remaining vertex x_{n+1}.

The coloring is minimum, as $T(\text{EDG}(K_{1,n}))$ contains a clique of order $n+1$, at least $(n+1)$ colors are required for its proper coloring. To prove that the above said coloring is acyclic.

Case 1. Consider the color class $<C_1, C_2>$ for $k=2$ and 4, the subgraph induced by these color class is the union of path P_3 and P_4 with $2(n-2)$ pendant vertices.

Case 2. Consider the color class $<C_1, C_3>$, the subgraph induced by these color class is a path P_7 and $2(n-2)$ pendant vertices.

Case 3. Consider the color class $<C_1, C_2>$ for $5 \leq k \leq n$, the subgraph induced by these color classes is the union of path P_3 and $2(n-2)$ pendant vertices.
Case 4. Consider the color class \(<C_1, C_{n+1}>\), the subgraph induced by these color class is the star \(K_{1,n}\).

Case 5. Consider the color class \(<C_i, C_j>\) for \(2 \leq i < j \leq n+1\), the subgraph induced by these color classes is the path \(P_2\).

In all the cases, the induced subgraphs has no cycles hence the coloring is acyclic and therefore,
\[a(T(EDG(K_{1,n})) = n+1, \quad n \geq 3. \]

V. CONCLUSION

In this paper, we obtained the acyclic chromatic number of middle graph, central graph and total graph of the extended duplicate graph of the star graphs.

REFERENCES

