Classical Logic And The Division By Zero

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2019 by IJMTT Journal
Volume-65 Issue-8
Year of Publication : 2019
Authors : Ilija Barukčić
  10.14445/22315373/IJMTT-V65I8P506

MLA

MLA Style:Ilija Barukčić "Classical Logic And The Division By Zero" International Journal of Mathematics Trends and Technology 65.7 (2019): 31-73.

APA Style: Ilija Barukčić(2019). Classical Logic And The Division By Zero International Journal of Mathematics Trends and Technology, 31-73.

Abstract
The division by zero turned out to be a long lasting and not ending puzzle in mathematics and physics. An end of this long discussion appears not to be in sight. In particular zero divided by zero is treated as indeterminate thus that a result cannot be found out. It is the purpose of this publication to solve the problem of the division of zero by zero while relying on the general validity of classical logic. A systematic re-analysis of classical logic and the division of zero by zero has been undertaken. The theorems of this publication are grounded on classical logic and Boolean algebra. There is some evidence that the problem of zero divided by zero can be solved by today’s mathematical tools.According to classical logic, zero divided by zero is equal to one.

Reference
[1] Barukčić I. Theoriae causalitatis principia mathematica. Norderstedt: Books on Demand; 2017.
[2] Barukčić I. Anti Bohr — Quantum Theory and Causality. Int J Appl Phys Math. 2017;7:93–111.
[3] Bombelli R. L‘ algebra : opera di Rafael Bombelli da Bologna, divisa in tre libri : con la quale ciascuno da se potrà venire in perfetta cognitione della teorica dell‘Aritmetica : con una tavola copiosa delle materie, che in essa si contengono. Bolgna (Italy): per Giovanni Rossi; 1579. http://www.e-rara.ch/doi/10.3931/e-rara-3918. Accessed 14 Feb 2019.
[4] Recorde R. The Whetstone of Witte, whiche is the seconde parte of Arithmetike: containing the extraction of rootes: The cossike practise, with the rule of Equation: and the workes of Surde Nombers. Robert Recorde, The Whetstone of Witte London, England: John Kyngstone, 1557. London (England): John Kyngstone; 1557. http://archive.org/details/TheWhetstoneOfWitte. Accessed 16 Feb 2019.
[5] Rolle M [1652-1719]. Traité d‘algèbre ou principes généraux pour résoudre les questions... Paris (France): chez Estienne Michallet; 1690. https://www.e-rara.ch/doi/10.3931/e-rara-16898. Accessed 16 Feb 2019.
[6] Widmann J. Behende und hüpsche Rechenung auff allen Kauffmanschafft. Leipzig (Holy Roman Empire): Conrad Kachelofen; 1489. http://hdl.loc.gov/loc.rbc/Rosenwald.0143.1
[7] Pacioli L. Summa de arithmetica, geometria, proportioni et proportionalità. Venice; 1494. http://doi.org/10.3931/e-rara-9150. Accessed 16 Feb 2019.
[8] Deutsch D. Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proc R Soc Math Phys Eng Sci. 1985;400:97–117. doi:10.1098/rspa.1985.0070.
[9] Schumacher B. Quantum coding. Phys Rev A. 1995;51:2738–47. doi:10.1103/PhysRevA.51.2738.
[10] Newstadt R. Omnis Determinatio est Negatio: A Genealogy and Defense of the Hegelian Conception of Negation. Dissertation. Chicago (IL): Loyola University Chicago; 2015. http://ecommons.luc.edu/luc_diss/1481.
[11] Horn LR. A Natural History of Negation. 2nd ed. Stanford, Calif: Centre for the Study of Language & Information; 2001
[12] Förster E, Melamed YY, editors. Spinoza and German idealism. Cambridge [England] ; New York: Cambridge University Press; 2012.
[13] Spinoza BD. Opera quae supersunt omnia / iterum edenda curavit, praefationes, vitam auctoris, nec non notitias, quae ad historiam scriptorum pertinent. Heinrich Eberhard Gottlob Paulus. Ienae: In Bibliopolio Academico: In Bibliopolio Academico; 1802. http://www.e-rara.ch/doi/10.3931/e-rara-14505. Accessed 28 Feb 2019.
[14] Hegel GWF. Hegel‘s Science of Logic (Wissenschaft der Logik). Later Printing edition. Amherst, N.Y: Humantiy Books; 1812.
[15] Boole G. An investigation of the laws of thought, on which are founded the mathematical theories of logic and probabilities. London (GB): Walton and Maberly; 1854. http://archive.org/details/investigationofl00boolrich. Accessed 12 Feb 2019.
[16] Bettinger AK, Englund JA. Algebra And Trigonometry. International Textbook Company.; 1960. http://archive.org/details/algebraandtrigon033520mbp. Accessed 31 Jul 2019.
[17] Euclid, Taylor HM. Euclids elements of geometry. Cambridge [Cambridgeshire] : at the University Press; 1893. http://archive.org/details/tayloreuclid00euclrich. Accessed 30 Jul 2019
[18] Barukčić I. Unified Field Theory. J Appl Math Phys. 2016;04:1379–438.
[19] Barukčić I. The Relativistic Wave Equation. Int J Appl Phys Math. 2013;3:387–91
[20] Brush SG, Lorentz HA, FitzGerald GF. Note on the History of the FitzGerald-Lorentz Contraction. Isis. 1967;58:230–2. doi:10.1086/350224.
[21] Abramowitz M, Stegun IA, editors. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. 9. Dover print.; [Nachdr. der Ausg. von 1972]. New York, NY: Dover Publ; 2013.
[22] Born M. Zur Quantenmechanik der Stoßvorgänge. Z Für Phys. 1926;37:863–7. doi:10.1007/BF01397477.
[23] Poincaré H. La théorie de Lorentz et le principe de réaction. Arch Néerl Sci Exactes Nat. 1900;5:252–278. http://www.physicsinsights.org/poincare-1900.pdf.
[24] Einstein A. Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Ann Phys. 1905;323:639–41. doi:10.1002/andp.19053231314.
[25] L‘Hôpital GFAD. Analyse Des Infiniment Petits, Pour l‘intelligence des lignes courbes (English translation: Analysis of the Infinitely Small for the Understanding of Curved Lines). Paris (France): De L‘Imprimerie Royale; 1696. doi:10.3931/e-rara-10415.
[26] Lettenmeyer F. Über die sogenannte Hospitalsche Regel. J Für Reine Angew Math Crelles J. 1936;1936:246–247. doi:10.1515/crll.1936.174.246.
[27] Wazewski T. Une demonstration uniforme du théorème généralisé de l‘Hospital. Ann Soc Pol Math. 1949;22:161–8.
[28] Taylor AE. L‘Hospital‘s Rule. Am Math Mon. 1952;59:20. doi:10.2307/2307183.
[29] Boas RP. Counterexamples to L‘hôpital‘s Rule. Am Math Mon. 1986;93:644–5. doi:10.1080/00029890.1986.11971912.
[30] Barukčić JP, Barukčić I. Anti Aristotle—The Division of Zero by Zero. J Appl Math Phys. 2016;04:749–61.
[31] Maor E. The Pythagorean Theorem: A 4,000-Year History. Reprint edition. Princeton University Press; 2010. https://press.princeton.edu/titles/9309.html.
[32] Euclid, Heath TL, Heiberg JL (Johan L. The thirteen books of Euclid‘s Elements. Cambridge, The University Press; 1908. http://archive.org/details/thirteenbookseu03heibgoog. Accessed 16 Mar 2019
[33] Leibniz GW, Gerhardt CI. Historia et origo Calculi Differentialis. Hannover: Hahn; 1846. http://archive.org/details/historiaetorigo00gerhgoog.
[34] Boyer CB, Merzbach UC. A history of mathematics. 2. ed. New York: Wiley; 1991.
[35] Needham J, Wang! L, Needham J. Mathematics and the sciences of the heavens and the earth. Cambridge: Cambridge Univ. Press; 2005
[36] Selin H, editor. Mathematics across cultures: the history of non-Western mathematics. Dordrecht: Kluwer; 2000.
[37] Kellner MM. R. Levi Ben Gerson: A Bibliographical Essay. Stud Bibliogr Booklore. 1979;12:13–23. https://www.jstor.org/stable/27943474. Accessed 29 Jul 2019.
[38] Langermann YT, Simonson S. The Hebrew Mathematical Tradition. In: Selin H, editor. Mathematics Across Cultures. Dordrecht: Springer Netherlands; 2000. p. 167–88. doi:10.1007/978-94-011-4301-1_10.
[39] Bürgi J. Aritmetische vnd Geometrische Progress Tabulen, sambt gründlichem vnterricht, wie solche nützlich in allerley Rechnungen zugebrauchen, vnd verstanden werden sol. Prag: Universitet Buchdruckern; 1620. https://bildsuche.digitale-sammlungen.de/index.html?c=viewer&lv=1& bandnummer=bsb00082065& pimage=00001& suchbegriff=& l=de.
[40] Briggs H. Trigonometria Britannica, sive De doctrina triangulorum libri duo : quorum prior continet constructionem canonis sinuum, tangentium & secantium, unà cum logarithmis sinuum & tangentium ad gradus & graduum centesimas & ad minuta & secunda centesimis respondentia / posterior verò usum sive applicationem canonis in resolutione triangulorum tam planorum quam sphaericorum e geometricis fundamentis petitâ, calculo facillimo, eximiisque compendiis exhibet. excudebat Petrus Rammasenius; 1633. doi:10.3931/e-rara-9466.
[41] Newton I. Analysis per quantitatum series, fluxiones, ac differentias: cum enumeratione linearum tertii ordinis. ex officina Pearsoniana; 1711. doi:10.3931/e-rara-8934.
[42] Cotes R. Harmonia mensurarum, sive analysis et synthesis per rationum et angulorum mensuras promotae : accedunt alia opuscula mathematica. [s.n.]; 1722. doi:10.3931/e-rara-4027.
[43] Stirling J. Methodus differentialis: sive tractatus de summatione et interpolatione serierum infinitarum. Typis Gul. Bowyer : Impensis G. Strahan; 1730. doi:10.3931/e-rara-68088.
[44] Euler L. Introductio in analysin infinitorum. apud Marcum-MIchaelem Bousquet & socios; 1748. doi:10.3931/e-rara-8740.
[45] Newton I. De Analysi per aequationes numero terminorum infinitas. London (England); 1669. doi:10.3931/e-rara-8934.
[46] Popper K. Conjectures and Refutations: The Growth of Scientific Knowledge. Überarb. A. London ; New York: Routledge; 2002.
[47] Nicomachus of Gerasa (Syria ca. 60 – ca. 120 AD). Introduction to Arithmetic. Translated into English by Mathin Luther D‘Ooge. New York: The Macmillan Company; 1926. https://ia600701.us.archive.org/15/items/NicomachusIntroToArithmetic/nicomachus_introduction_arithmetic.pdf.
[48] Barukčić I. Zero Divided by Zero Equals One. J Appl Math Phys. 2018;06:836–53.
[49] Euler L. Vollständige Anleitung zur Algebra. St. Petersburg: Bei der kayserlichen Akademie der Wissenschaften; 1771. https://www.e-rara.ch/doi/10.3931/e-rara-9093. Accessed 16 Jan 2019.
[50] Wallis J. Arithmetica infinitorvm, sive nova methodus inquirendi in curvilineorum quadraturam, aliaq; difficiliora matheseos problemata. Oxonii [i.e. Oxford]: typis Leon. Lichfield ; impensis Tho. Robinson; 1656. http://dx.doi.org/10.3931/e-rara-38681.
[51] Newton I. Opuscula mathematica, philosophica et philologica. Collegit partimque latine vertit ac recensuit Joh. Castillioneus. 1744. http://www.e-rara.ch/doi/10.3931/e-rara-8608. Accessed 16 Jan 2019.
[52] Barukčić I. The Geometrization of the Electromagnetic Field. J Appl Math Phys. 2016;04:2135–71.
[53] Nepero I < Barone M. Mirifici Logarithmorum Canonis descriptio, Ejusque usus, in utraque Trigonometria; ut etiam in omni Logistica Mathematica, Amplissimi, facillimi, & expeditissimi explicatio. Edinburgi: Ex officinâ Andreae Hart; 1614. https://www.loc.gov/item/04005707/. Accessed 28 Jul 2019.
[54] Diophantus. Diophantus geometra sive opus contextum ex arithmetica et geometria simul : in quo quaestiones omnes Diophanti, quae geometrice solvi possunt, enodantur tum algebricis, tum geometricis rationibus : adiectus est Diophantus geometra pro motus ... apud Michaelem Soly; 1660. doi:10.3931/e-rara-27747.
[55] Crowley ML, Dunn KA. On Multiplying Negative Numbers. Math Teach. 1985;78:252–6. https://www.jstor.org/stable/27964483. Accessed 28 Jul 2019.
[56] Cardano G. Artis magnae, sive de regulis algebraicis, liber unus. Qui & totius operis de arithmetica, quod opus perfectum inscripsit, est in ordine decimus. Nürnberg (Holy Roman Empire): Petreius; 1545. doi:10.3931/e-rara-9159.
[57] Barukčić I. The Interior Logic of Inequalities. Int J Math Trends Technol IJMTT. 2019;65:146–55.doi:10.14445/22315373/IJMTT-V65I7P524.
[58] Paolilli AL. Division by Zero: a Note. Int J Innov Sci Math. 2017;5:199–200. https://www.ijism.org/index.php?option=com_jresearch&view=publication&task=show&id=266&Itemid=171. Accessed 31 Jan 2019.
[59] Ufuoma O. On the Operation of Division by Zero in Bhaskara‘s Framework: Survey, Criticisms, Modifications and Justifications. Asian Res J Math. 2017;6:1–20. doi:10.9734/ARJOM/2017/36240.
[60] Barukčić JP, Barukčić I. Anti Aristotle—The Division of Zero by Zero. J Appl Math Phys. 2016;04:749–61. doi:10.4236/jamp.2016.44085.
[61] Patrick Mwangi W. Mathematics Journal: Division of Zero by Itself - Division of Zero by Itself Has Unique Solution. Pure Appl Math J. 2018;7:20. doi:10.11648/j.pamj.20180703.11.
[62] Czajko J. On Unconventional Division by Zero. World Sci News. 2018;99:133–47. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.psjd-3a9d46ab-dfd0-41cd-84b5-bf7527e63d43. Accessed 9 Jun 2019.
[63] Czajko J. On Cantorian spacetime over number systems with division by zero. Chaos Solitons Fractals. 2004;21:261–71. doi:10.1016/j.chaos.2003.12.046.
[64] Ufuoma O. Exact Arithmetic of Zero and Infinity Based on the Conventional Division by Zero 0/0 = 1. Asian Res J Math. 2019;:1–40. doi:10.9734/arjom/2019/v13i130099.
[65] Anderson JADW, Völker N, Adams AA. Perspex Machine VIII: axioms of transreal arithmetic. In: Latecki LJ, Mount DM, Wu AY, editors. San Jose, CA, USA; 2007. p. 649902. doi:10.1117/12.698153.
[66] Bergstra JA, Hirshfeld Y, Tucker JV. Meadows and the equational specification of division. Theor Comput Sci. 2009;410:1261–71. doi:10.1016/j.tcs.2008.12.015.
[67] Bergstra JA, Ponse A. Division by Zero in Common Meadows. In: De Nicola R, Hennicker R, editors. Software, Services, and Systems. Cham: Springer International Publishing; 2015. p. 46–61. doi:10.1007/978-3-319-15545-6_6.
[68] Matsuura T, Saitoh S. Matrices and Division by Zero z/0 = 0. Adv Linear Algebra Amp Matrix Theory. 2016;06:51–8. doi:10.4236/alamt.2016.62007.
[69] Michiwaki H, Saitoh S, Yamada M. Reality of the Division by Zero z/0 = 0. Int J Appl Phys Math. 2016;6:1–8. doi:10.17706/ijapm.2016.6.1.1-8.
[70] da Costa NCA. On the theory of inconsistent formal systems. Notre Dame J Form Log. 1974;15:497–510. doi:10.1305/ndjfl/1093891487
[71] Quesada FM, editor. Heterodox logics and the problem of the unity of logic. In: Non-Classical Logics, Model Theory, and Computability: Proceedings of the Third Latin-American symposium on Mathematical Logic, Campinas, Brazil, July 11-17, 1976. Arruda, A. I., Costa, N. C. A. da, Chuaqui, R. (Eds.). Amsterdam ; New York : New York: North-Holland; 1977.
[72] Barukčić I. Aristotle‘s law of contradiction and Einstein‘s special theory of relativity. J Drug Deliv Ther. 2019;9:125–43. doi:10.22270/jddt.v9i2.2389.

Keywords
Indeterminate forms, Classical logic, Zero divided by zero, Infinity