Volume 65 | Issue 3 | Year 2019 | Article Id. IJMTT-V65I3P511 | DOI : https://doi.org/10.14445/22315373/IJMTT-V65I3P511
Oluwagbenga T. Babatunde, OlaOluwa S. Yaya, Damola M. Akinlana, "Misspecification of Generalized Autoregressive Score Models: Monte Carlo Simulations and Applications," International Journal of Mathematics Trends and Technology (IJMTT), vol. 65, no. 3, pp. 72-80, 2019. Crossref, https://doi.org/10.14445/22315373/IJMTT-V65I3P511
[1] Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics 31: 307–327.
[2] Harvey, A. (2013). Dynamic Models for volatility and Heavy tails: with applications to financial and economic time series. Cambridge University Press, London.
[3] Harvey, A. and Chakravarty, T. (2008). Beta-t-(E)GARCH. Working paper series.University of Cambridge.
[4] Mandelbrot, B. (1963). The Variation of Certain Speculative Prices. Journal of Business: 36, 394-419.
[5] Fama, E.F. (1970). Efficient Capital Markets: A Review and Theory and Emperical Work. The Journal of Finance: 25, 383-417.
[6] Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom.Econometrica, 50, 987-1008.
[7] Xekalaki, E. and Degiannakis, S. (2010). ARCH Models for Financial Applications.John Wiley and Sons Ltd.
[8] Andersen, T., Bollerslev, T. andDiebold, F.(2007). Roughing itup: including jump components in the measurement, modelling and forecastingof return volatility.The Review of Economics and Statistics: 89, 701–720.
[9] Creal, D., Koopman, S.J. and Lucas, A. (2008). A General Framework for Observation Driven Time-Varying Parameter Models.Tinbergen Institute Discussion Paper.TI 2008-108/4.
[10] Creal, D., Koopman, S. J., and Lucas, A. (2011). A dynamic multivariate heavy-tailed model for time-varying volatilities and correlations. Journal of Business and Economic Statistics: 29, 552-563.
[11] Creal, D., Koopman, S.J. and Lucas, A. (2013). Generalized Autoregressive Score (GAS) Models With Applications. Journal of Applied Econometrics: 28,777-795.
[12] Elder, J., Miao, H. and Ramchander, S. (2013). Jumps in Oil Prices: The role of economic news. The Energy Journal: 34, 217-237.
[13] Charles, A. and Darne, O. (2014). Volatility persistence in Crude oil markets. Energy Policy: 65, 729-742.
[14] Halunga, A.G. and Orme, C.D. (2004). Misspecification tests for GARCH models. School of Social Sciences, University of Manchester, Working Paper, 1-35.
[15] Engle, R.F. and Ng, V.K. (1993). Measuring and Testing the Impact of News on Volatility. The Journal of Finance: 48, 1749-1778.
[16] Lundbergh and Terasvirta (2002). Evaluating GARCH Models. Journal of Econometrics: 110, 417-435.
[17] Posedel, P. (2005). Properties and Estimation of GARCH (1,1) model. MetodoloskiZvezki: 2,243-257.
[18] Bellini, F. and Bottolo, L. (2007). Misspecification and domain issues in fitting Garch (1,1) models: a Monte Carlo investigation. Working paper.University of Milano-Bicocca, Italy and Imperial College London, UK.
[19] Caporin, M. and Lisi, F. (2010). Misspecification tests for periodic long memory GARCH models. Statistical Method and Application: 19, 47-62.
[20] Blasques, F., Koopman, S.J. and Lucas, A. (2008). Stationarity and Ergodicity of Univariate GAS Process. Electronic Journal of Statistics: 8, 1088-1112.
[21] Calvori, F., Cipollini, F. and Gallo, G.M. (2013). Go with the flow: A GAS model for predicting intra-daily volume shares. Social Science Research Network.http://ssrn.com/abstract=2363483
[22] Huang, Z., Wang, T. and Zhang, X. (2014). GAS model with realized measures of volatility.http://ssrn.com/abstract=2461831.
[23] Blasques, F., Koopman, S.J. and Lucas, A. (2014a). Maximum Likelihood Estimation for correctly specified Generalized Autoregressive Score Models: Feedback Effects, Contraction Conditions and Asymptotic Properties. Tinbergen Institute Discussion Paper No TI 2014-074/III.
[24] Blasques, F., Koopman, S. J., and Lucas, A. (2014b). Information theoretic optimality of observation driven time series models.Discussion Paper Tinbergen Institute TI 14-046/III.
[25] Bernadi, M. and Cantania, L. (2015a). Switching-GAS copula models for systemic Risk Assessment. arxiv.org/abs/1504.03733vi.
[26] Akaike, H. (1973). “Information theory and an extension of the maximum likelihood principle”. In B.N. Petrov and F. Csaki (eds), Proceedings of the Second International Symposium on Information Theory, pp. 267–281. Budapest: AkademiaiKiado´. Reproduced in S. Kotz and N.L. Johnson (eds), Breakthroughs in Statistics Vol I Foundations and Basic Theory, pp. 610–624. New York: Springer-Verlag 1992.
[27] Nelson, D. B. 1991. “Conditional Heteroscedasticity in Asset Returns: A New approach.” Econometrica: 59, 347–70.
[28] Bauwens, L., Hafner, C. and Laurent, S. (2012). Volatility Models, In Handbook of Volatility Models and Their Applications (eds L. Bauwens, C. Hafner and S. Laurent), John Wiley and Sons, Inc., NJ, U.S.A.