Volume 53 | Number 3 | Year 2018 | Article Id. IJMTT-V53P521 | DOI : https://doi.org/10.14445/22315373/IJMTT-V53P521
Dr. Dipankar Sadhukhan, "Prey-Predator Model with General Holling Type Response Function and Optimal Harvesting Policy," International Journal of Mathematics Trends and Technology (IJMTT), vol. 53, no. 3, pp. 172-179, 2018. Crossref, https://doi.org/10.14445/22315373/IJMTT-V53P521
[1] A. J. Lotka, Elements of Physical Biology, Baltimore:Williams and Wilkins. 1925.
[2] V. Volterra, Variazioni e fluttuazioni del numero di individui in species animali conviventi, Mem. Accd. Lincei., 31-113, 1926.
[3] S. E. Jorgensen, Energy and ecological system analysis, complex Ecosystems (B. C. Pattern and S.E. Jorgensen, eds.), Prentice Hall, New York, 1994.
[4] C. W. Clark, The Optimal Management of Renewable resources, Mathematical Bioeconomics, Wiley, New York, 1976.
[5] C. W. Clark, Bioeconomic Modelling and Fisheries Management, Wiley, New York, 1985.
[6] C. W. Clark, Mathematical Bioeconomics: The Optimal Management of Renewable Resources, (2nd edn.), Wiley, New York, 1990.
[7] Mesterton-Gibbons, Natural resource Modelling, vol. 2, 107-132, 1987.
[8] T. Kar and K. S. Chaudhuri, On non-selective harvesting of a multispecies fishery, Int. J. Math. Edu. Sci. Technol., 33(4), 543-556, 2002.
[9] T. Kar and K. S. Chaudhuri, Harvesting in a two prey one predator fishery: A bio-economic model, ANZIAM J., 45, 443-456, 2004.
[10] T.Kar and K. S. Chaudhuri, Bioeconomic modelling of selective harvesting in an inshore-offshore fishery, Diff.Equation and Dynamical System, Vol.7, No.3, 305-320, 1999.
[11] T.Kar,U.K.Pahari and K. S. Chaudhuri, Management of a prey-predator fishery based on continuous fishing effort, J. Biol. Systems, Vol.12, No.3, 301-313, 2004.
[12] D.Sadhukhan, L. N. Sahoo, B. Mondal and M. Maiti, Food chain model with optimal harvesting in fuzzy environment, J. Appl. Math. and computing, 2009.
[13] J. Sugie and M. Katagama, Global asymptotically stability of predator-prey system of Holling type, Nonlinear anal. 38, 105-121, 1999.
[14] J. Sugie, R. Kohno and R. Miyazaki, On a predator-prey system of Holling type, Proc. Amer. Math. Soc 125. 2041-2050, 1997.
[15] L. Zhang, W. Wang,Y. Xueand Z. Jin, Complex dynamics of a Holling-type IV predator-prey model,arXiv:0801.4365v1[q-bio.PE]28 Jan 2008.
[16] K. S. Chaudhuri,A bioecnomic model of harvesting a multispecies fishery, Ecological Modelling, 32: 267-279, 1986.
[17] G. Birkhoff and G. C. Rota, Ordinary differential equations, Waltham, MA: Blaisdell, 1982.
[18] J. K. Hale,Ordinary Differential Equation, Johan Wiley and Sons, New-York. 1969.
[19] L. S. Pontryagin, V. S. Boltyanskii, R. V. Gamkrelizre and E. F. Mishchenko,The Mathematical Theory of Optimal Process, Pergamon Press, London, 1962.
[20] P. D. N. Srinivasu, Bioeconomics of a renewable resource in presence of a predator, Nonlinear Analysis: Real World Applications, 2: 49-506, 2001.
[21] P. D. N. Srinivasu and B. S. R. V. Prasad, Role of Quantity of Additional Food to Predators as a Control in Predator-Prey System with Relevance to Pest Management and Biological Conservation, Bulletin of Mathematical Biology, 73: 2249-2276, 2011.
[22] T. K. Kar, S. Misra, and B. Mukhopadhyay, A bionomic model of a ratio-dependent predator-prey system and optimal harvesting, Journal of Applied Mathematics and Computing, 22(1-2): 387-40, 2006.
[23] T. K. Kar and S. K. Chattopadhyay, Bioeconomic Modelling: An Appli- cation to the North-East-Atlantic Cod Fishery, Journal of Mathematics Research, 1(2): 164-178, 2009.