On βg^* Closed Sets in Topological Ordered Spaces

C.Dhanapakyam*1, K.Indirani*2

*1 Assistant Professor, Department of Mathematics
Rathnavel subramaniam College of Arts & Science, Coimbatore, India
*2 Associate Professor, Nirmala College for women Red fields, Coimbatore, India

Abstract
The aim of this paper is to introduce a new class of closed sets in topological ordered spaces called increasing βg^*-closed sets, decreasing βg^*-closed sets and balance βg^*-closed sets and obtain some of its characteristics.

Keywords - βg^*-closed set, $d\beta g^*$-closed set, $b\beta g^*$-closed set

I. INTRODUCTION
Leopoldo Nachbin [6] initiated the study of topological ordered spaces. A topological ordered spaces is a triple (X, τ, \leq) where τ is a topology on X and \leq is a partial order on X. For any $x \in X$, $\{y \in X | x \leq y\} = [x, \to]$ and $\{y \in X | y \leq x\} = [\to, x]$. A subset A of a topological ordered space (X, τ, \leq) is said to be increasing if $A = i(A)$ and decreasing if $A = d(A)$ where $i(A) = \bigcup_{a \in A} [a, \to]$ and $d(A) = \bigcup_{a \in A} [\to, a]$. A subset of a topological ordered space (X, τ, \leq) is said to be balanced if it is both increasing and decreasing.

II. PRELIMINARIES
Throughout this paper (X, τ, \leq) represent topological ordered spaces on which no separation axioms are assumed unless otherwise mentioned. For any subset A of a space (X, τ, \leq), $cl(A)$ and $int(A)$ denote the closure of A and interior of A respectively.

Definition 2.1: A subset A of a space (X, τ) is called
1) a regular open set[3] if $A = int(cl(A))$ and regular-closed if $A = cl(int(A))$.
2) a β-open set [1] if $A \subset cl(int(cl(A)))$ and β-closed if $int(cl(int(A))) \subset A$.
3) a semi-open set[5] if $A \subset cl(int(A))$ and semi-closed if $int(cl(A)) \subset A$.

Definition 2.2: A subset A of a topological space (X, τ) is called
1. Generalized closed (briefly g-closed) [4] if $cl(A) \subset U$ whenever $A \subset U$ and U is open.

Definition 2.3.[7] A subset A of a topological space (X, τ, \leq) is called
(i) an iclosed set if A is an increasing set and closed set.
(ii) a dclosed set if A is a decreasing set and closed set.
(iii) a bclosed set if A is both an increasing and decreasing set and a closed set.

III. $x\beta g^*$-CLOSED SETS

Definition 3.1: A subset A of (X, τ) is called βg^*-closed set if $gcl(A) \subset U$ whenever $A \subset U$ and U is β open.

Definition 3.2: A subset A of (X, τ, \leq) is called $i\beta g^*$ closed set if it is both increasing and βg^* closed set.

Remark 3.3: A and X are $i\beta g^*$ closed subset of (X, τ, \leq).

Theorem 3.4: Every iclosed set is an $i\beta g^*$ closed set but not conversely.

Proof: Every closed set is a βg^* closed[3]. Then every iclosed set is an $i\beta g^*$ closed set.
Example 3.5: Let $X=\{a,b,c\}$, $\tau=\{X, \phi, \{a\}, \leq = (a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$ clearly (X, τ, \leq) is a topological ordered space. All closed sets are $\{c\}$, $\{b,c\}, X, \phi$. Then clearly $A=\{c\}$ is an βg^* closed but not an ir closed set in X.

Theorem 3.6: Every increasing regular closed set is an βg^* closed but not conversely.

Proof: Every regular closed set is an βg^* closed set $[3]$. Then every $i \beta g^*$ closed set.

Example 3.7: Let $X=\{a,b,c\}$, $\tau=\{X, \phi, \{a\}, \leq = (a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$ clearly (X, τ, \leq) is a topological ordered space. All closed sets are $\{c\}$, $\{b,c\}, X, \phi$. Then clearly $A=\{c\}$ is an βg^* closed but not an ir closed set in X.

Definition 3.8: A subset A of (X, τ, \leq) is called an $d \beta g^*$ closed set if it both decreasing and βg^* closed.

Theorem 3.9: Every d closed set is an $d \beta g^*$ closed set and conversely.

Proof: Every closed d closed set is in a $d \beta g^*$ closed set $[3]$. Then every $d \beta g^*$ closed set is an $d \beta g^*$ closed set.

Example 3.10: Let $X=\{a,b,c\}$, $\tau=\{X, \phi, \{a\}, \leq = (a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$ clearly (X, τ, \leq) is a topological ordered space. All closed sets are $\{c\}$, $\{a,b\}, X, \phi$. Then clearly $A=\{a\}$ or $\{a,b\}$ is an $d \beta g^*$ closed set.

Theorem 3.11: Every decreasing regular closed set is a $d \beta g^*$ closed set but not conversely.

Proof: Every closed regular set is a $d \beta g^*$ closed set $[3]$. Then every $d \beta g^*$ closed set is an $d \beta g^*$ closed set.

Example 3.12: Let $X=\{a,b,c\}$, $\tau=\{X, \phi, \{a\}, \leq = (a, a), (b, b), (c, c), (a, b), (b, c), (a, c)\}$ clearly (X, τ, \leq) is a topological ordered space. All $d \beta g^*$ closed sets are $\{c\}$, $\{a,b\}, X, \phi$. Then clearly $A=\{a\}$ or $\{a,b\}$ is an $d \beta g^*$ closed but not an $d \beta g^*$ closed set in X.

Definition 3.13: A subset A of (X, τ, \leq) is called an $b \beta g^*$ closed set if it both increasing and decreasing βg^* closed.

Theorem 3.14: Every b closed set is an $b \beta g^*$ closed set but not conversely.

Proof: Every closed b set is a $b \beta g^*$ closed set $[3]$. Then every $b \beta g^*$ closed set is an $b \beta g^*$ closed set.

Example 3.15: Let $X=\{a,b,c\}$, $\tau=\{X, \phi, \{a\}, \leq = (a, a), (b, b), (c, c)\}$ clearly (X, τ, \leq) is a topological ordered space. All $b \beta g^*$ closed sets are $\{c\}$, $\{a,b\}$, $\{b,c\}, X, \phi$. Then clearly $A=\{c\}$ is an $b \beta g^*$ closed but not an $b \beta g^*$ closed set in X.

Theorem 3.16: Every b regular closed set is $b \beta g^*$ closed but not conversely.

Proof: Every regular closed set is a $b \beta g^*$ closed set $[3]$. Then every $b \beta g^*$ closed set is an $b \beta g^*$ closed set.

Example 3.17: Let $X=\{a,b,c\}$, $\tau=\{X, \phi, \{a\}, \leq = (a, a), (b, b), (c, c)\}$ clearly (X, τ, \leq) is a topological ordered space. All $b \beta g^*$ closed sets are $\{a\}$, $\{b,c\}, \{a,b\}, \{b,c\}, X, \phi$. Then clearly $A=\{a\}$ is an $b \beta g^*$ closed but not a b closed set in X.

IV. CONCLUSION

In this paper, we have introduced increasing βg^* closed sets, decreasing βg^* closed sets and balanced βg^* closed sets and established their relationship with some of its characteristics in topological ordered spaces.

REFERENCES