Abstract—Let G be an simple undirected graphs. A subset D of V is said to be a chromatic strong(weak) dominating set if D is a strong(weak) dominating set and \(\chi(<D>) = \chi(G) \). The minimum cardinality of a chromatic strong(weak) dominating set in a graph G is called the chromatic strong(weak) dominating number and is denoted by \(\gamma_c(G) \) (\(\gamma_w(G) \)). A graph G is called \(\gamma_c(G) \)-excellent if every vertex of G belongs to a \(\gamma_c(G) \)-set. We find that the necessary and sufficient condition for some particular graph, of the form \(K^n \cup P_m \), is \(\gamma_c \)-excellent and \(\gamma_w \)-excellent.

Keywords—Chromatic strong domination, Chromatic weak domination, Chromatic strong excellent graph, Chromatic weak excellent graph.

I. INTRODUCTION

Let \(G=(V,E) \) be a simple undirected graph with vertex set V and edge set E. A coloring of a graph G is an assignment of n colors to its vertices so that no two adjacent vertices have the same color. The chromatic number \(\chi(G) \) is defined as the minimum n for which G has an n-coloring. The diameter of a connected graph G is defined by \(\max\{ d(u,v) : u,v \in V(G) \} \) and is denoted by \(\text{diam}(G) \). Note that diameter of a path \(P_n \) is the distance between the end vertices. That is \(\text{diam}(P_n)=n-1 \). For graph theoretic terminology, we refer to [2] and [4]. A subset D of V is a dominating set of G if every vertex in V-D is adjacent to at least one vertex in D. The domination number \(\gamma(G) \) of G is the minimum cardinality of the dominating set of G. A study of domination in graphs and its advanced topics are given in [6]. Prof. E. Sampathkumar and L. Pushpalatha have defined strong(weak) domination in graphs shown in [8]. A subset D of V is called a strong(weak) dominating set of G if for every vertex in V-D there exists \(u \in D \) such that \(uv \in E \) and \(\deg u \geq \deg v \) (\(\deg v \geq \deg u \)). The strong(weak) domination number \(\gamma_s(G) \) (\(\gamma_w(G) \)) of G is the minimum cardinality of a strong(weak) dominating set of G. A study of domination in graphs and its advanced topics are given in [6].

Prof. T. N. Janakiraman and M. Poobalaranjani [7] introduced a new conditional dom chromatic set and Prof. S. Balamurugan et al [3] extended this dom chromatic set to chromatic strong (weak) dominating set. A subset D of G is said to be a chromatic strong(weak) dominating set if D is a strong(weak) dominating set and \(\chi(<D>)=\chi(G) \). The minimum cardinality of a chromatic strong(weak) dominating set in a graph G is called the chromatic strong(weak) dominating number and is denoted by \(\gamma_c(G) \) (\(\gamma_w(G) \)). A chromatic strong dominating set with cardinality \(\gamma_c(G) \) is called \(\gamma_c \)-set (\(\gamma_w \)-set).

Prof. N. Sridharan and M. Yamuna [9] defined some new classes of excellent graphs with respect to \(\gamma \)-set. Prof. CVR Harinarayanan et al [5] extended it to strong (weak) domination excellent graphs. We introduce a chromatic strong (weak) excellent in graphs and find the condition for chromatic strong (weak) very excellent caterpillar in [1].

II. CHROMATIC STRONG (WEAK) EXCELLENT

A. \(\gamma_c \) (\(\gamma_w \))-EXCELLENT [1]

A vertex \(u \) in G is said to be \(\gamma_c \) (\(\gamma_w \))-good if \(u \) belongs to some \(\gamma_c \) (\(\gamma_w \)-set) of G and \(\gamma_c \) (\(\gamma_w \))-bad otherwise. A graph G is called \(\gamma_c \) (\(\gamma_w \))-excellent if every vertex of G is \(\gamma_c \) (\(\gamma_w \)-good. Equivalently, a graph G is said to be excellent with respect to chromatic strong (Weak) domination if each \(u \in V(G) \) is contained in some \(\gamma_c \) (\(\gamma_w \)-set) of G.

Abstract—Let G be an simple undirected graphs. A subset D of V is said to be a chromatic strong(weak) dominating set if D is a strong(weak) dominating set and \(\chi(<D>) = \chi(G) \). The minimum cardinality of a chromatic strong(weak) dominating set in a graph G is called the chromatic strong(weak) dominating number and is denoted by \(\gamma_c(G) \) (\(\gamma_w(G) \)). A graph G is called \(\gamma_c(G) \)-excellent if every vertex of G belongs to a \(\gamma_c(G) \)-set. We find that the necessary and sufficient condition for some particular graph, of the form \(K^n \cup P_m \), is \(\gamma_c \)-excellent and \(\gamma_w \)-excellent.

Keywords—Chromatic strong domination, Chromatic weak domination, Chromatic strong excellent graph, Chromatic weak excellent graph.
B. $\gamma_c^c (\gamma_{w}^c)$ – Just Excellent [1]

A graph G is said to be just excellent with respect to chromatic strong (Weak) domination if each $u \in V(G)$ is contained in a unique $\gamma_c^c (\gamma_{w}^c)$ - set of G. We also says that G is $\gamma_c^c (\gamma_{w}^c)$ - just excellent graph.

C. $\gamma_c^c (\gamma_{w}^c)$ – Very Excellent [1]

A graph G is said to be very excellent with respect to chromatic strong (Weak) domination if there is a $\gamma_c^c (\gamma_{w}^c)$ - set of G such that to each vertex $v \in V(G)$ there exists a vertex $v \in D$ such that $(D - \{v\}) \cup \{u\}$ is $\gamma_c^c (\gamma_{w}^c)$ - set of G. We also says that G is $\gamma_c^c (\gamma_{w}^c)$ - very excellent graph.

D. $\gamma_c^c (\gamma_{w}^c)$ – Rigid Very Excellent [1]

Let G be a very excellent graph and D be a very excellent $\gamma_c^c (\gamma_{w}^c)$ - set of G. To each $u \in D$, let E(u,D) be the set of vertices of D which are exchangeable with u.

If |E(u,D)| = 1, then D is said to be rigid very excellent $\gamma_c^c (\gamma_{w}^c)$ - set of G. If G has at least one rigid very excellent $\gamma_c^c (\gamma_{w}^c)$ - set then G is said to be rigid very excellent.

III. CHROMATIC STRONG EXCELLENT GRAPHS

A. Theorem

Let $G = K_m \cup P_n$ be a complete graph where K_m is the complete graph with $m(>3)$ vertices and P_n(n≥2) is the path with the vertex set {1,2,3,…,n}. Let $X=\{x_1,x_2,x_3,…,x_i\}$ be a non empty set where x_i is the i^{th} vertex of P_n such that $x_i \in V(K_m)$. Then G is γ_c^c - excellent graph if and only if the following hold

i. V(K_m) is a subset of every chromatic strong dominating set of G.

ii. In P_n, for $t \in \mathbb{N}$,

a. $d(x_1,1) = d(x_n,n) = 3t -1$

b. $d(x_i,1+x_i) = 3t -2$, for all $i=1,2,…,k -1$

Proof:

Given $G=K_m \cup P_n$. Clearly, the chromatic number of G is m. Let D be γ_c^c - set of G. If G is γ_c^c - excellent, then clearly, $V(K_m) \subseteq V(G)$ is a subset of every chromatic strong dominating set, D of G. Therefore (i) holds.

Case : 1

If $k=1$, i.e., $V(K_m) \cap V(P_n)$={x_1}. Then, we have to prove that both $d(x_1,1)$ and $d(x_1,n)$ is of the form 3t-1, $t \in \mathbb{N}$, in P_n. Suppose $d(x_1,1)$≠3t-1 if x_i≠ n. If $d(x_1,n)$=3t, then the vertices $x_1+1,x_1+4,x_1+7,…,n$-n belong to no γ_c^c - set of G. Otherwise, $D \not\supset \gamma_c^c$. If $d(x_1,n)$=3t+1, then $D=V(K_m) \cup \{x_1+3,x_1+6,…,n-1\}$ is a unique γ_c^c - set of G. Otherwise, $D \not\supset \gamma_c^c$. Since both sub cases lead to contradiction, $d(x_1,1)=3t-1$. Similarly, $d(x_1,n)=3t-1$.

Case : 2

If $k≠1$. If x_i≠ 1, then by case : 1, the result.$d(x_1,1)=3t-1$ is true. Similarly, $d(x_1,n)=3t-1$ if x_i≠ n. Hence, (ii)-(a) holds. Let S_i be the set of all vertices lies between x_i and x_{i+1} in P_n. That is $S_i=\{s \in P_n | x_i<s<s_{i+1}\}$. Let $S_i=\{s_{i1},s_{i2},…,s_{i(n)}\}$. Suppose that $d(x_{i-n},s_{i1})≠3t-2$ in P_n. If $d(x_{i-n},s_{i1})=3t$, then $D=V(K_m) \cup \{s_{i1},s_{i2},…,s_{i(3t-1)}\}$ is a unique γ_c^c - set of G. If $d(x_{i-n},s_{i1})=3t-1$, then the vertices $s_{i1},s_{i2},…,s_{i(3t-1)}$ belong to no γ_c^c - set of G. Otherwise, $D \not\supset \gamma_c^c$. Since both sub cases lead to contradiction, $d(x_{i-n},s_{i1})=3t-2$. Hence (ii)-(b) holds. Conversely,

Now, we assume that the given graph $G=K_m \cup P_n$ satisfies the condition (i) and (ii). Suppose G is not a γ_c^c-excellent. Let D be any γ_c^c - set of G. Then there exists a vertex x in V(G) such that no γ_c^c - set, D of G containing x. Since by (i), xnotin V(K_m). Hence $x \in V(P_n)$-V(K_m).

Case : 1

If x lies between 1 and x_1 then, Let S_b be the set of all vertices lies between x_1 and 1 including x_1 and 1. Let $R=S_b \cap D$={$r_1,r_2,…,r_q$}. Clearly, $x \not\in R$ and x not in R. If $d(r_{j+1},r_j)=3$, for all $1 \leq j < q$, then, $d(x_1,1)=3t+1, (t \in \mathbb{N})$, contradicts (ii)-(a). Otherwise, If $d(r_{j+1},r_j)=2$, for a unique j, then $d(x_1,1)=3t, (t \in \mathbb{N})$, contradicts (ii)-(a).
It is clear that the end vertex of \(P_{m-i} \) is adjacent to \(x \). Let \(r \) be the adjacent vertex of \(r_{j+1} \) other than \(x \) as shown in the following figure.

\[
\begin{array}{c}
\ldots \quad r_j \quad r_{j+1} \quad r_{j+2} \quad \cdots \\
\end{array}
\]

Then, clearly, \(D-\{r_j, r_{j+1}\} \cup \{r,x\} \) is a \(\gamma^c_x \) set of \(G \) containing \(x \), which is contradiction. If \(d(r_j, r_{j+1}) = 2 \), for more than two \(j \), then, \(|D| > \gamma^c_x \). Hence \(G \) is \(\gamma^c_x \) excellent.

Case : 2

If \(x \) lies between \(x_k \) and \(x \). It is similar to case : 1. Hence, by case : 1, \(G \) is \(\gamma^c_x \) excellent.

Case : 3

If \(x \) lies between \(x_i \) and \(x_{i+1} \), then. Let \(S \) be the set of all vertices lies between \(x_i \) and \(x_{i+1} \) including \(x_i \) and \(x_{i+1} \). And let \(T = S \cup D = \{r_1, r_2, \ldots, r_p\} \). Clearly, \(x_i \in T \), \(x_{i+1} \in T \) and \(x \) not in \(T \). If \(d(t_i, t_{i+1}) = 3 \), for all \(i \leq \text{p} \), then, \(d(x_i, x_{i+1}) = 3t_0 (\text{e} \ N) \). Which is contradiction to (ii)-(b). Otherwise, If \(d(t_i, t_{i+1}) = 2 \), for a unique \(j \), then \(d(x_i, x_{i+1}) = 3t_1 (\text{e} \ N) \). Which is contradiction to (ii)-(b). If \(d(t_i, t_{i+1}) = 2 \), for any two \(j \), then, \(|D| > \gamma^c_x \). Hence \(G \) is \(\gamma^c_x \) excellent.

B. Corollary

Let \(G = K_m \cup P \) be a graph where \(K_m \) is the complete graph with \(m(>3) \) vertices and \(P \) is the union of disjoint paths \(P_j (j \geq 2) \) with the vertex set \{1, 2, 3, \ldots, n\}. Let \(X^0 = \{x_1^0, x_2^0, x_3^0, \ldots, x_k^0\} \) be a non empty set, where \(x_i^0 \) is the \(i^{th} \) vertex of \(P \) such that \(x_i^0 \in V(K_m) \). Then \(G \) is \(\gamma^c_x \) excellent graph if and only if the following hold

1. \(V(K_m) \) is a subset of every chromatic strong dominating set of \(G \).
2. \(\text{In } P_j \) for each \(j \) and for \(\text{e} \ N \)
 - \(d(1, x_i^0) = d(x_i^0, n) = 3t_1 \)
 - \(d(x_i^0, x_i^0) = 3t_2 \), for all \(i = 1, 2, \ldots, k \)

C. Theorem

Let \(G = K_m \cup C_n \) be a connected graph where \(K_m \) is the complete graph with \(m(>3) \) vertices and \(C_n \) is the cycle with \((n \geq 3) \) vertices. Let \(H = \{ V(G)-V(K_m) \} \) and let \(H_1, H_2, \ldots, H_p \) be components of \(H \). Then \(G \) is \(\gamma^c_x \) excellent graph if and only if the following hold

1. \(V(K_m) \) is a subset of every chromatic strong dominating set of \(G \).
2. \(\text{diam}(H_t) = 3t_1, \text{e} \ N \), for each \(i = 1, 2, \ldots, p \)

Proof:

Given \(G = K_m \cup C_n \) is a connected graph. Then \(H \) is a disjoint union of paths. ie., each \(H_i \) is a path. Let \(H_i = P_{k_i} \) be a path with the vertex set \{1, 2, \ldots, k_i\}. It is clear that the chromatic number and clique number of the graph \(G \) is \(m \). Let \(D \) be \(\gamma^c_x \) set of \(G \). If \(G \) is \(\gamma^c_x \) excellent, clearly, \(V(K_m) \subseteq V(G) \) is a subset of every chromatic strong dominating set, \(D \) of \(G \). Therefore (i) holds. Now we have to prove that \(\text{diam}(H_t) = 3t_1, \text{e} \ N \), for each \(i = 1, 2, \ldots, p \). It is enough to prove that \(ki = 3t_1 \), for each \(i \). It is clear that the end vertex of \(P_{k_i} \) is adjacent to vertex of \(D \),
since \(V(K_m) \subset D \). Suppose \(ki \neq 3t \). If \(ki=3t+1 \), then the vertices \(h_1, h_2, h_3, \ldots, h_{3t+1} \) belongs to no \(\gamma^c_x \)- set of \(G \). Otherwise, \([D] \not\supset \gamma^c_x \). If \(ki=3t-1 \), then \(D=V(K_m) \cup \{ h_1, h_2, \ldots, h_{3t} \} \) is a unique \(\gamma^c_x \)- set of \(G \). Since both cases lead to contradiction, \(ki=3t \).

Hence (ii) holds.

Conversely,

Now, we assume that the given graph \(G=K_m \cup C \) satisfies the condition (i) and (ii). Suppose \(G \) is not \(\gamma^c_x \)- excellent. Let \(D \) be any \(\gamma^c_x \)- set of \(G \). Then there exists a vertex \(x \) in \(V(G) \) such that no \(\gamma^c_x \)- set \(D \) of \(G \) containing \(x \). Since by (i), \(x \) not in \(V(K_m) \). Hence \(x \in H \) implies \(x \notin H_i \) for some \(i \). Let \(p \) and \(q \) be the vertices of \(V(K_m) \) which is also adjacent to the pendant vertex of \(H_i \). Let \(S=(H_i \cap D) \cup \{ p, q \} \) and let \(S=\{ s_1, s_2, \ldots, s_t, q \} \) (say). Clearly, \(x \notin S \). If \(d(s_i, s_{i+1})=3 \), for all \(1 \leq i < r \), then \(d(p, q)=3t \), \((\forall \in N) \) implies \(\text{diam}(H_i)=3t-2 \), \((\forall \in N) \) contradicts (ii). Otherwise, if \(d(s_i, s_{i+1})=2 \), for a unique \(j \), then \(d(p, q)=3t-1 \), \((\forall \in N) \) implies \(\text{diam}(H_i)=3t \), \((\forall \in N) \) contradicts (2). If \(d(s_j, s_{j+1})=2 \), for any two \(j \), \(j=1, 2, \ldots, r-1 \), \(d(s_1, s_{j+1})=d(s_2, s_{j+2})=2 \) then in particular, let \(j=1+1 \) and \(x \) is adjacent to both \(s_j \) and \(s_{j+1} \) as shown in the following figure.

\[\ldots s_j \ldots x \ldots s_{j+1} \ldots \]

Then, clearly, \((S-S_{j+1}) \cup \{ x \} \) is a \(\gamma^c_x \)- set of \(G \) containing \(x \) which is also contradiction. If \(d(s_j, s_{j+1})=2 \), for more than two \(j \), then \(D \not\supset \gamma^c_x \).

Hence \(G \) is \(\gamma^c_x \)- excellent.

D. Corollary

Let \(G=K_m \cup C \) be a connected graph where \(K_m \) is the complete graph with \(m(>3) \) vertices and \(C \) is the union of disjoint cycles, \(C_j(n \geq 3) \). Let \(H=\left\{ V(G)-V(K_m) \right\} \) and let \(H_1, H_2, \ldots, H_p \) be a components of \(H \). Then \(G \) is \(\gamma^c_x \)- excellent graph if and only if the following hold

i. \(V(K_m) \) is a subset of every chromatic strong dominating set of \(G \).

ii. \(\text{diam}(H_i)=3t-1, \forall \in N \), for each \(i=1, 2, \ldots, p \)

IV. CHROMATIC WEAK EXCELLENT GRAPHS

A. Theorem

Let \(G=K_m \cup P \) be a graph where \(K_m \) is the complete graph with \(m(>3) \) vertices and \(P \) is the union of disjoint paths \(P_j \) with the vertex set \(\{ 1, 2, 3, \ldots, n \} \). Let \(X=\{ x_1, x_2, x_3, \ldots, x_k \} \) is non empty, where \(x_i \) is the \(i^{th} \) vertex of \(P \) such that \(x_i \in V(K_m) \). then \(G \) is \(\gamma^c_x \)- excellent graph if and only if the following hold

i. \(V(K_m) \) is a subset of every chromatic weak dominating set of \(G \).

ii. In \(P_j \), for \(\forall \in N \),

a. \(d(1, x_i)=d(1, n)=1 \) or \(3t \)

b. \(d(x_i, x_{i+1})=3 \) or \(3t-1 \), for all \(i=1, 2, \ldots, k-1 \)

B. Corollary

Let \(G=K_m \cup P \) be a graph where \(K_m \) is the complete graph with \(m(>3) \) vertices and \(P \) is the union of disjoint paths \(P_j \) with the vertex set \(\{ 1, 2, 3, \ldots, n \} \). Let \(X=\{ x_1, x_2, x_3, \ldots, x_k \} \) is non empty where \(x_i \) is the \(i^{th} \) vertex of \(P \) such that \(x_i \in V(K_m) \). then \(G \) is \(\gamma^c_x \)- excellent graph if and only if the following hold

i. \(V(K_m) \) is a subset of every chromatic weak dominating set of \(G \).

ii. In \(P_j \), for each \(j \) and for \(\forall \in N \),

a. \(d(1, x_i)=d(1, n)=1 \) or \(3t \)

b. \(d(x_i, x_{i+1})=3 \) or \(3t-1 \),

for all \(i=1, 2, \ldots, k-1 \)
C. Theorem

Let $G = K_m \cup C_n$ be a connected graph where K_m is the complete graph with $m(>3)$ vertices and C_n is the cycle with the $(n \geq 3)$ vertices. Let $H=(\ V(G)-V(K_m))$ and let H_1, H_2, \ldots, H_p be a components of H Then G is γ_{wc}^G- excellent graph if and only if the following hold

i. $V(K_m)$ is a subset of every chromatic weak dominating set of G.

ii. $diam(H_i) = 1$ or $3t$, $t \in \mathbb{N}$, for each $i=1,2,\ldots,p$

D. Corollary

Let $G = K_m \cup C$ be a connected graph where K_m is the complete graph with $m(>3)$ vertices and C is the union of disjoint cycles, $C_n(n \geq 3)$. Let $H=(\ V(G)-V(K_m))$ and let H_1, H_2, \ldots, H_p be a components of H Then G is γ_{wc}^G- excellent graph if and only if the following hold

i. $V(K_m)$ is a subset of every chromatic weak dominating set of G.

ii. $diam(H_i) = 1$ or $3t$, $t \in \mathbb{N}$, for each $i=1,2,\ldots,p$

V. REFERENCES

