Finite integral involving the sequences of functions, a class of polynomials, multivariable Aleph-functions and logarithm function of general arguments I

F.Y. AYANT

1 Teacher in High School, France

ABSTRACT

In the present paper we evaluate a generalized finite integral involving the product of the sequence functions, the multivariable Aleph-functions, general class of polynomials of several variables and logarithm function with general arguments. The importance of the result established in this paper lies in the fact they involve the Aleph-function of several variables which is sufficiently general in nature and capable to yielding a large of results merely by specializing the parameters their in.

Keywords: Multivariable Aleph-function, general class of polynomials, sequence of functions, multivariable I-function, Aleph-function of two variable, I-function of two variables.

2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1. Introduction and preliminaries.

The function Aleph of several variables generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [6], itself is an a generalisation of G and H-functions of multiple variables. The multiple Mellin-Barnes integral occurring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

We define :

\[N(z_1, \ldots, z_r) = \mathcal{N}(z_1, \ldots, z_r) = \mathcal{N}_{0, n: m_1, \ldots, m_r, n_r = 1}^{0, n: m_1, \ldots, m_r, n_r} \left\{ \begin{array}{c}
Z_1 \\
\vdots \\
Z_r
\end{array} \right\}
\]

\[
\begin{bmatrix}
[\alpha_j^{(1)}, \alpha_j^{(r)}]_{1, n_1} \\
[\tau_j(a_j; \alpha_j^{(1)}, \ldots, \alpha_j^{(r)})_{n+1, p_1}]
\end{bmatrix}
\]

\[
\begin{bmatrix}
[\beta_j^{(1)}, \beta_j^{(r)}]_{m+1, q_j} \\
[\tau_j(b_j; \beta_j^{(1)}, \ldots, \beta_j^{(r)})_{m+1, q_j}]
\end{bmatrix}
\]

\[
\begin{bmatrix}
[\alpha_j^{(1)}; \gamma_j^{(1)}]_{1, m_1} \\
[\tau_j(c_j^{(1)}; \gamma_j^{(1)}{\gamma_j^{(1)}}{n_1+1, p_1})] \\
\vdots \\
[\alpha_j^{(r)}; \gamma_j^{(r)}]_{1, n_r} \\
[\tau_j(c_j^{(r)}; \gamma_j^{(r)}{\gamma_j^{(r)}}{n_r+1, p_1})] \\
[\alpha_j^{(1)}; \delta_j^{(1)}]_{1, m_1} \\
[\tau_j(d_j^{(1)}; \delta_j^{(1)}{\delta_j^{(1)}}{m_1+1, q_1})] \\
\vdots \\
[\alpha_j^{(r)}; \delta_j^{(r)}]_{1, m_r} \\
[\tau_j(d_j^{(r)}; \delta_j^{(r)}{\delta_j^{(r)}}{m_r+1, q_r})]
\end{bmatrix}
\]

\[
= \frac{1}{(2\pi\omega)^r} \int_{L_1} \cdots \int_{L_r} \psi(s_1, \ldots, s_r) \prod_{k=1}^r \theta_k(s_k) y_k^{s_k} ds_1 \cdots ds_r
\]

with \(\omega = \sqrt{-1} \)

\[
\psi(s_1, \ldots, s_r) = \frac{\prod_{j=1}^n \Gamma(1 - \alpha_j + \sum_{k=1}^r \alpha_j^{(k)} s_k)}{\sum_{i=1}^r \tau_i \prod_{j=n+1}^{p_i} \Gamma(\alpha_j + \sum_{k=1}^r \alpha_j^{(k)} s_k) \prod_{j=1}^q \tau_j \Gamma(1 - \beta_j + \sum_{k=1}^r \beta_j^{(k)} s_k)}
\]
and \(\theta_k(s_k) = \frac{\prod_{j=1}^{m_k} \Gamma(d_j^{(k)} - \delta_j^{(k)} s_k) \prod_{j=1}^{n_k} \Gamma(1 - c_j^{(k)} + \gamma_j^{(k)} s_k)}{\sum_{i=1}^{R(k)} \prod_{j=1}^{q_i(k)} \Gamma(1 - d_j^{(k)} + c_j^{(k)} s_k) \prod_{j=1}^{n_i(k) + 1} \Gamma(c_j^{(k)} - \gamma_j^{(k)} s_k)} \) (1.3)

Suppose, as usual, that the parameters

\(a_j, j = 1, \ldots, p; b_j, j = 1, \ldots, q; \)
\(c_j^{(k)}, j = 1, \ldots, n_k; c_j^{(k)}; j = n_k + 1, \ldots, p_i; \)
\(d_j^{(k)}, j = 1, \ldots, m_k; d_j^{(k)}; j = m_k + 1, \ldots, q_i; \)

with \(k = 1 \ldots, r, i = 1, \ldots, R, i^{(k)} = 1, \ldots, R(k) \)

are complex numbers, and the \(\alpha' s, \beta' s, \gamma' s \) and \(\delta' s \) are assumed to be positive real numbers for standardization purpose such that

\[U_i^{(k)} = \sum_{j=1}^{n} \alpha_j^{(k)} + \tau_i \sum_{j=n+1}^{n_k} \alpha_j^{(k)} + \sum_{j=1}^{m_k} \gamma_j^{(k)} + \tau_i \sum_{j=n_k+1}^{p_i} \gamma_j^{(k)} - \tau_i \sum_{j=1}^{q_i} \beta_j^{(k)} - \sum_{j=1}^{m_k} \delta_j^{(k)} \]

\[-\tau_i^{(k)} \sum_{j=m_k+1}^{q_i} \gamma_j^{(k)} \leq 0 \] (1.4)

The real numbers \(\tau_i \) are positives for \(i = 1 \) to \(R \), \(\tau_i^{(k)} \) are positives for \(i^{(k)} = 1 \) to \(R(k) \)

The contour \(L_k \) is in the \(s_k \)-p lane and run from \(\sigma - i\infty \) to \(\sigma + i\infty \) where \(\sigma \) is a real number with loop, if necessary, ensure that the poles of \(\Gamma(d_j^{(k)} - \delta_j^{(k)} s_k) \) with \(j = 1 \) to \(m_k \) are separated from those of \(\Gamma(1 - a_j + c_j^{(k)} s_k) \) with \(j = 1 \) to \(n_k \) and \(\Gamma(1 - c_j^{(k)} + \gamma_j^{(k)} s_k) \) with \(j = 1 \) to \(n_k \) to the left of the contour \(L_k \). The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H-function given by as :

\[\text{arg} z_k < \frac{1}{2} A_i^{(k)} \pi , \text{ where} \]

\[A_i^{(k)} = \sum_{j=1}^{n} \alpha_j^{(k)} - \tau_i \sum_{j=n+1}^{n_k} \alpha_j^{(k)} - \tau_i \sum_{j=1}^{m_k} \beta_j^{(k)} + \sum_{j=1}^{n_k} \gamma_j^{(k)} - \tau_i \sum_{j=n_k+1}^{p_i} \gamma_j^{(k)} \]

\[+ \sum_{j=1}^{m_k} \delta_j^{(k)} - \tau_i^{(k)} \sum_{j=m_k+1}^{m_k} \delta_j^{(k)} > 0 , \text{ with } k = 1 \ldots, r, i = 1, \ldots, R, i^{(k)} = 1, \ldots, R(k) \] (1.5)

The complex numbers \(z_i \) are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form:

\[\mathcal{N}(z_1, \ldots, z_r) = 0 \left(|z_1|^{\alpha_1} , \ldots , |z_r|^{\alpha_r} \right), \max_{i} \left(|z_1|, \ldots , |z_r| \right) \rightarrow 0 \]

\[\mathcal{N}(z_1, \ldots, z_r) = 0 \left(|z_1|^{\beta_1} , \ldots , |z_r|^{\beta_r} \right), \min_{i} \left(|z_1|, \ldots , |z_r| \right) \rightarrow \infty \]

where, with \(k = 1, \ldots, r : \alpha_k = \min \left(\text{Re}(d_j^{(k)} / \delta_j^{(k)}) \right), j = 1, \ldots, m_k \), and
Serie representation of Aleph-function of several variables is given by

$$R(y_1, \cdots, y_r) = \sum_{G_1, \cdots, G_r = 0}^{\infty} \sum_{g_1 = 0}^{m_1} \cdots \sum_{g_r = 0}^{m_r} \frac{(-1)^{G_1} \cdots G_r}{\delta_{g_1} G_1! \cdots \delta_{g_r} G_r!} \psi(\eta_{G_1, g_1}, \cdots, \eta_{G_r, g_r})$$

$$\times \theta_1(\eta_{G_1, g_1}) \cdots \theta_r(\eta_{G_r, g_r}) y_1^{-\eta_{G_1, g_1}} \cdots y_r^{-\eta_{G_r, g_r}} \tag{1.6}$$

Where $$\psi(\cdot, \cdots, \cdot), \theta_i(\cdot), i = 1, \cdots, r$$ are given respectively in (1.2), (1.3) and

$$\eta_{G_i, g_i} = \frac{d^{(i)} g_i + G_i}{d^{(i)} g_i} \cdots, \eta_{G_r, g_r} = \frac{d^{(r)} g_r + G_r}{d^{(r)} g_r}$$

which is valid under the conditions

$$\delta_{g_i}^{(i)} [d^{(i)} g_i + p_i] \neq \delta_{g_i}^{(i)} [d^{(i)} g_i + G_i] \tag{1.7}$$

for $$j \neq m_i, m_i = 1, \cdots, \eta_{G_i, g_i}, p_i, n_i = 0, 1, 2, \cdots, y_i \neq 0, i = 1, \cdots, r \tag{1.8}$$

Consider the Aleph-function of s variables

$$N(z_1, \cdots, z_s) = N^{0, N, M_1, N_1, \cdots, M_s, N_s}_{P_i, Q_i, r_i, r^{(i)}, Q^{(i)}}: p_1, \cdots, q_1, r^{(i)}, Q^{(i)}: \begin{pmatrix} z_1 \\ \vdots \\ z_s \end{pmatrix}$$

$$= \frac{1}{(2\pi i)^s} \int_{L_1} \cdots \int_{L_s} \zeta(t_1, \cdots, t_s) \prod_{k=1}^{s} \phi_k(t_k) z_k^{t_k} dt_1 \cdots dt_s \tag{1.9}$$

with $$\omega = -1$$

$$\zeta(t_1, \cdots, t_s) = \frac{\prod_{j=1}^{N_1} \Gamma(1 - u_{j1} \pm \sum_{k=1}^{s} \mu_j^{(k)} t_k) \Gamma(1 - v_{j1} \pm \sum_{k=1}^{s} \nu_j^{(k)} t_k)}{\sum_{i=1}^{s} \Gamma(1 - u_{ji} \pm \sum_{k=1}^{s} \mu_j^{(k)} t_k) \Gamma(1 - v_{ji} \pm \sum_{k=1}^{s} \nu_j^{(k)} t_k) \prod_{i=1}^{Q_i} P_i} \tag{1.10}$$

and

$$\phi_k(t_k) = \frac{\prod_{j=1}^{M_k} \Gamma(1 - b_{j1}^{(k)} t_k) \prod_{i=1}^{Q_i} P_i^{a_i^{(k)}} \Gamma(1 - a_{j1}^{(k)} + \sum_{k=1}^{s} \alpha_j^{(k)} s_k)}{\prod_{i=1}^{s} \Gamma(1 - b_{ji}^{(k)} + \sum_{k=1}^{s} \beta_{ji}^{(k)} t_k) \prod_{i=1}^{Q_i} P_i^{a_i^{(k)}} \Gamma(1 - a_{j1}^{(k)} - \sum_{k=1}^{s} \alpha_j^{(k)} s_k)} \tag{1.11}$$
Suppose, as usual, that the parameters

\[u_j, j = 1, \cdots, P; v_j, j = 1, \cdots, Q; \]

\[a_j^{(k)}, j = 1, \cdots, N_k; \alpha_j^{(k)}, j = n_k + 1, \cdots, P_{i(k)}; \]

\[b_j^{(k)}, j = m_k + 1, \cdots, Q_{i(k)}; b_j^{(k)}, j = 1, \cdots, M_k; \]

with \(k = 1, \cdots, s, i = 1, \cdots, r', i^{(k)} = 1, \cdots, r^{(k)} \)

are complex numbers, and the \(\alpha's, \beta's, \gamma's \) and \(\delta's \) are assumed to be positive real numbers for standardization purpose such that

\[
U_i^{(k)} = \sum_{j=1}^{N} \mu_j^{(k)} + \sum_{j=N+1}^{P_s} \mu_j^{(k)} + \sum_{j=1}^{N_k} \alpha_j^{(k)} + \sum_{j=N_k+1}^{P_{i(k)}} \alpha_j^{(k)} - \sum_{j=1}^{Q_s} v_j^{(k)} - \sum_{j=1}^{M_k} \beta_j^{(k)}
\]

\[-\sum_{j=M_k+1}^{Q_{i(k)}} \beta_j^{(k)} \leq 0 \quad (1.12)\]

The real numbers \(\tau_i \) are positives for \(i = 1, \cdots, r', \) \(\tau_i^{(k)} \) are positives for \(i^{(k)} = 1 \cdots r^{(k)} \)

The contour \(L_k \) is in the \(t_k \)-p plane and run from \(\sigma - i\infty \) to \(\sigma + i\infty \) where \(\sigma \) is a real number with loop, if necessary, ensure that the poles of \(\Gamma(b_j^{(k)} - \beta_j^{(k)} t_k) \) with \(j = 1 \) to \(M_k \) are separated from those of \(\Gamma(1 - u_j + \sum_{i=1}^{s} \mu_j^{(k)} t_k) \) with \(j = 1 \) to \(N \) and \(\Gamma(1 - \alpha_j^{(k)} + \alpha_j^{(k)} t_k) \) with \(j = 1 \) to \(N_k \) to the left of the contour \(L_k \). The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H-function given by as:

\[\arg z_k < \frac{1}{2} B_i^{(k)} \pi, \text{ where} \]

\[
B_i^{(k)} = \sum_{j=1}^{N} \mu_j^{(k)} - \sum_{j=N+1}^{P_s} \mu_j^{(k)} - \sum_{j=1}^{N_k} \alpha_j^{(k)} + \sum_{j=N_k+1}^{P_{i(k)}} \alpha_j^{(k)} - \sum_{j=1}^{Q_s} v_j^{(k)} - \sum_{j=1}^{M_k} \beta_j^{(k)} + \sum_{j=M_k+1}^{Q_{i(k)}} \beta_j^{(k)} > 0, \text{ with } k = 1, \cdots, s, i = 1, \cdots, r', i^{(k)} = 1, \cdots, r^{(k)} \quad (1.13)\]

The complex numbers \(z_i \) are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the asymptotic expansion in the following convenient form:

\[N(z_1, \cdots, z_s) = 0(\max(|z_1|^{\alpha'_s}, \cdots, |z_s|^{\alpha'_s}), \max(|z_1|, \cdots, |z_s|) \rightarrow 0\]

\[N(z_1, \cdots, z_s) = 0(\min(|z_1|^{\beta'_s}, \cdots, |z_s|^{\beta'_s}), \min(|z_1|, \cdots, |z_s|) \rightarrow \infty\]

where, \(k = 1, \cdots, z : \alpha'_k = \min(Re(b_j^{(k)} / \beta_j^{(k)})), j = 1, \cdots, M_k \) and \(\beta'_k = \max(Re((a_j^{(k)} - 1) / \alpha_j^{(k)})), j = 1, \cdots, N_k \)
We will use these following notations in this paper
\[U = P, Q_{i}, u_{i}, v_{i} ; \quad V = M_{1}, N_{1}, \ldots ; M_{s}, N_{s} \]
\[W = P_{i}^{(1)}, Q_{i}^{(1)}, u_{i}^{(1)}, v_{i}^{(1)}, \ldots ; P_{i}^{(s)}, Q_{i}^{(s)}, u_{i}^{(s)}, v_{i}^{(s)} ; \quad r^{(s)} \]
\[A' = \{(u_{j}, \mu^{(1)}_{j}, \ldots, \mu^{(s)}_{j}) \mid 1 \leq N \}, \{t_{i}(u_{ji}, \mu^{(1)}_{ji}, \ldots, \mu^{(s)}_{ji})N_{+1, P_{i}} \} \]
\[B = \{t_{i}(v_{ji}, u^{(1)}_{ji}, \ldots, v^{(s)}_{ji})M_{+1, Q_{i}} \} \]
\[C = (a^{(1)}_{j}, \alpha^{(1)}_{ji}, \ldots, (a^{(1)}_{ji}, \alpha^{(1)}_{ji})N_{1}+1, P_{i}^{(s)}, \ldots, (a^{(s)}_{j}, \alpha^{(s)}_{ji})N_{s}+1, P_{i}^{(s)} \]
\[D = (b^{(1)}_{j}, \beta^{(1)}_{ji}, \ldots, (b^{(1)}_{ji}, \beta^{(1)}_{ji})M_{1}+1, Q_{i}^{(s)}, \ldots, (b^{(s)}_{j}, \beta^{(s)}_{ji})M_{s}+1, Q_{i}^{(s)} \]

The multivariable Aleph-function write:
\[\mathbb{N}(z_{1}, \ldots, z_{s}) = \mathbb{N}^{0, N; W}_{U; V} \left(\begin{array}{c} z_{1} \\ \vdots \\ z_{s} \end{array} \right) \left(\begin{array}{c} A' : C \\ B' : D \end{array} \right) \]

The generalized polynomials defined by Srivastava [9], is given in the following manner:
\[S_{N_{1}, \ldots, N_{s}}^{M_{1}, \ldots, M_{s}}[y_{1}, \ldots, y_{t}] = \sum_{K_{1}=0}^{[N_{1}/M_{1}]} \ldots \sum_{K_{t}=0}^{[N_{t}/M_{t}]} \frac{(-N_{1})_{M_{1}}K_{1}}{K_{1}!} \ldots \frac{(-N_{t})_{M_{t}}K_{t}}{K_{t}!} A[N_{1}, K_{1}; \ldots; N_{t}, K_{t}]^{y_{1}K_{1}} \cdots y_{t}^{K_{t}} \]

Where \(M_{1}, \ldots, M_{s} \) are arbitrary positive integers and the coefficients \(A[N_{1}, K_{1}; \ldots; N_{t}, K_{t}] \) are arbitrary constants, real or complex. In the present paper, we use the following notation
\[a_{1} = \frac{(-N_{1})_{M_{1}}K_{1}}{K_{1}!} \ldots \frac{(-N_{t})_{M_{t}}K_{t}}{K_{t}!} A[N_{1}, K_{1}; \ldots; N_{t}, K_{t}] \]

In the document, we note:
\[G(\eta_{G_{1}, g_{1}}, \ldots, \eta_{G_{r}, g_{r}}) = \phi(\eta_{G_{1}, g_{1}}, \ldots, \eta_{G_{r}, g_{r}}) \theta_{1}(\eta_{G_{1}, g_{1}}) \cdots \theta_{r}(\eta_{G_{r}, g_{r}}) \]

where \(\phi(\eta_{G_{1}, g_{1}}, \ldots, \eta_{G_{r}, g_{r}}), \theta_{1}(\eta_{G_{1}, g_{1}}), \ldots, \theta_{r}(\eta_{G_{r}, g_{r}}) \) are given respectively in (1.2) and (1.3)

2. Sequence of function

Agarwal and Chaubey [1], Salim [5] and several others have studied a general sequence of functions. In the present document we shall study the following useful series formula for a general sequence of functions.
\[R_{n, b}^{a, \alpha}[x; E, F, g, h, p, q; \gamma; \delta; e^{-sx}] = \sum_{w, v, u, t, e, k_{1}, k_{2}} \psi(w, v, u, t, e, k_{1}, k_{2}) x^{R} \]

ISSN: 2231-5373 http://www.ijmttjournal.org Page 149
\[\sum_{w,v,u,t,e,k_1,k_2} = \sum_{w=0}^{\infty} \sum_{v=0}^{n} \sum_{u=0}^{n} \sum_{t=0}^{n} \sum_{e=0}^{k_1} \sum_{k_1=0}^{k_2} \sum_{k_2=0}^{\infty} \quad (2.2) \]

and the infinite series on the right side (2.1) is absolutely convergent, \(R = ln + qv + pt + rw + k_1r + k_2q \)

and \[\psi(w,v,u,t,e,k_1,k_2) = \frac{(-1)^{t+w+k_2} (-v)_u (-t)_e (-\alpha)_t (\alpha)_t t^n}{w!v!u!t!e!k_1!k_2!} \frac{s^{w+k_1} F^{s \gamma n - t}}{(1 - \alpha - t)_e} (\alpha - \gamma n)_e \]

\[(-\beta - \delta n)_v g^{v+k_2 \delta n - v - k_2} (v - \delta n)_k_2 E^t \left(\frac{pe + rw + \lambda + qn}{l} \right) \quad (2.3) \]

where \(K_n \) is a sequence of constants.

By suitably specializing the parameters involving in (2.1), a general sequence of function reduced to generalized polynomials set studied by Raizada [4], a class of polynomials introduced by Fujiwara [3] and several others authors.

3. Required integral

We have the following integral, see Brychkow ([2], 4.1.5, 33 page 136).

\[\int_0^a x^{s-1} (a - x)^{t-1} \ln b \sqrt{x(a-x)} + \sqrt{1+b^2 x(a-x)} \, \, dx = a^{s+t} b B\left(s + \frac{1}{2}, t + \frac{1}{2}\right) \]

\[\times {}_4 F_3 \left(\begin{array}{c} \frac{1}{2}, \frac{1}{2}, s + \frac{1}{2}, t + \frac{1}{2} \\ \frac{3}{2}, \frac{s + t + 1}{2}, \frac{s + t}{2} + 1 \end{array} ; - \frac{(ab)^2}{4} \right) \quad (3.1) \]

where \(a > 0, Re(s) > 0, Re(t) > 0, |arg(4 + a^2 b^2)| < \pi \)

4. Main integral

Let \(X_{s,t} = x^s (a - x)^t \), we have the following generalized finite integral:

\[\int_0^a x^{s'-1} (a - x)^{t'-1} \ln b \sqrt{x(a-x)} + \sqrt{1+b^2 x(a-x)} \, R_n^{\alpha,\beta, \gamma} [zX_{n,\alpha,\beta}, \gamma]; E, F, g, h; p; q; \gamma'; \delta'; e^{-s(X_{s,t})r} \]

\[S_{M_1, \ldots, M_t}^{M_1, \ldots, M_t} \left(\begin{array}{c} y_1 X_{\tau_1, \mu_1} \\ \vdots \\ y_t X_{\tau_t, \mu_t} \end{array} \right) \, N_{u,w}^{0, n; v} \left(\begin{array}{c} Z_1 X_{\alpha_1, \beta_1} \\ \vdots \\ Z_r X_{\alpha_r, \beta_r} \end{array} \right) \, N_{u',w'}^{0, n'; v'} \left(\begin{array}{c} Z_1 X_{\eta_1, \epsilon_1} \\ \vdots \\ Z_r X_{\eta_r, \epsilon_r} \end{array} \right) \quad dx = a^{s' + t'} b \]

\[\sum_{G_1, \ldots, G_r} \sum_{G_1} \sum_{G_r} (-1)^{G_1 + \ldots + G_r} \delta_{G_1} \ldots \delta_{G_r} G_{\eta G_1, \eta_2, \ldots, \eta_r G_r} \]

\[= \sum_{G_1, \ldots, G_r} \sum_{G_1} \sum_{G_r} (-1)^{G_1 + \ldots + G_r} \delta_{G_1} \ldots \delta_{G_r} G_{\eta G_1, \eta_2, \ldots, \eta_r G_r} \]

\[= \sum_{G_1, \ldots, G_r} \sum_{G_1} \sum_{G_r} (-1)^{G_1 + \ldots + G_r} \delta_{G_1} \ldots \delta_{G_r} G_{\eta G_1, \eta_2, \ldots, \eta_r G_r} \]

\[= \sum_{G_1, \ldots, G_r} \sum_{G_1} \sum_{G_r} (-1)^{G_1 + \ldots + G_r} \delta_{G_1} \ldots \delta_{G_r} G_{\eta G_1, \eta_2, \ldots, \eta_r G_r} \]

\[= \sum_{G_1, \ldots, G_r} \sum_{G_1} \sum_{G_r} (-1)^{G_1 + \ldots + G_r} \delta_{G_1} \ldots \delta_{G_r} G_{\eta G_1, \eta_2, \ldots, \eta_r G_r} \]

\[= \sum_{G_1, \ldots, G_r} \sum_{G_1} \sum_{G_r} (-1)^{G_1 + \ldots + G_r} \delta_{G_1} \ldots \delta_{G_r} G_{\eta G_1, \eta_2, \ldots, \eta_r G_r} \]

\[= \sum_{G_1, \ldots, G_r} \sum_{G_1} \sum_{G_r} (-1)^{G_1 + \ldots + G_r} \delta_{G_1} \ldots \delta_{G_r} G_{\eta G_1, \eta_2, \ldots, \eta_r G_r} \]

\[= \sum_{G_1, \ldots, G_r} \sum_{G_1} \sum_{G_r} (-1)^{G_1 + \ldots + G_r} \delta_{G_1} \ldots \delta_{G_r} G_{\eta G_1, \eta_2, \ldots, \eta_r G_r} \]
\[
\alpha_1 \left(\frac{1}{2} \right)_n \left(\frac{1}{2} \right)_n \frac{(-ab)^{2n'}}{4n'\left(\frac{3}{2} \right)_n n'} \psi(w, v, u, t, e, k_1, k_2) x_1^{p_1} \cdots x_s^{p_s} z_{r_1}^{\eta_{r_1}} \cdots z_{r_m}^{\eta_{r_m}} y_1 \cdots y_t^{N} \psi
\]

\[
\begin{pmatrix}
 Z_1 e^\eta_1 + \epsilon_1 \\
 \vdots \\
 Z_s e^\eta_s + \epsilon_s
\end{pmatrix}
\]

\[
\left(\frac{1}{2} - n' \right) (s' + RA + \sum_{i=1}^t K_i (\gamma_i + \sum_{i=1}^r \eta_{G_i, g_i} (\alpha_i + \beta_i)); \eta_1, \cdots, \eta_s),
\]

\[
\left(- (s' + t' + RA (\gamma + \delta) + \sum_{i=1}^t K_i (\gamma_i + \mu_i) + \sum_{i=1}^r \eta_{G_i, g_i} (\alpha_i + \beta_i)); \epsilon_1 + \eta_1, \cdots, \epsilon_s + \eta_s),
\]

\[
\left(\frac{1}{2} - n' \right) (s' + t' + RA (\gamma + \delta) + \sum_{i=1}^t K_i (\gamma_i + \mu_i) + \sum_{i=1}^r \eta_{G_i, g_i} (\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \cdots, \frac{\epsilon_s + \eta_s}{2},
\]

\[
\left(\frac{1}{2} - n' \right) (s' + t' + RA (\gamma + \delta) + \sum_{i=1}^t K_i (\gamma_i + \mu_i) + \sum_{i=1}^r \eta_{G_i, g_i} (\alpha_i + \beta_i)); \frac{\epsilon_1 + \eta_1}{2}, \cdots, \frac{\epsilon_s + \eta_s}{2},
\]

\[
\left(\frac{1}{2} - n' \right) (t' + RA \delta + \sum_{i=1}^t K_i \mu_i + \sum_{i=1}^r \eta_{G_i, g_i} (\beta_i)); \epsilon_1, \cdots, \epsilon_s, A' : C
\]

where \(U_{43} = P_t + 4; Q_i + 3; \epsilon_i ; r' \)

Provided that

a) \(\min \{ A, \gamma, \delta, \gamma_i, \mu_i, \alpha_j, \beta_j, \eta_k, \epsilon_k \} > 0, i = 1, \cdots, t, j = 1, \cdots, r, k = 1, \cdots, s \)

b) \(\text{Re} \left[s' + RA \gamma + \sum_{i=1}^r \alpha_i \min_{1 \leq j \leq m_i} \frac{d_{j(i)}}{\delta_{j(i)}} + \sum_{i=1}^R \eta_i \min_{1 \leq j \leq M_i} \frac{b_{j(i)}}{\beta_{j(i)}} \right] > 0 \)

c) \(\text{Re} \left[t' + RA \delta + \sum_{i=1}^r \beta_i \min_{1 \leq j \leq m_i} \frac{d_{j(i)}}{\delta_{j(i)}} + \sum_{i=1}^R \epsilon_i \min_{1 \leq j \leq M_i} \frac{b_{j(i)}}{\beta_{j(i)}} \right] > 0 \)

d) \(|\text{arg} z_k| < \frac{1}{2} A_{i}^{(k)} \pi, \text{ where } A_{i}^{(k)} \text{ is defined by } (1.5); \ i = 1, \cdots, r \)

e) \(|\text{arg} Z_k| < \frac{1}{2} B_{i}^{(k)} \pi, \text{ where } B_{i}^{(k)} \text{ is defined by } (1.13); \ i = 1, \cdots, s \)

f) The series occurring on the right-hand side of (3.1) is absolutely and uniformly convergent.
Proof

First, expressing the generalized sequence of functions $R_{n_1}^{\alpha, \beta} [z X_{\gamma}; E, F, g, h; p, q; \gamma'; \delta'; e^{-s(z X_{\gamma})}]$ in multiple serie with the help of equation (2.1), the Aleph-function of r variables in series with the help of equation (1.6), the general class of polynomial of several variables S_{N_1, \cdots, N_r} with the help of equation (1.22) and the Aleph-function of s variables in Mellin-Barnes contour integral with the help of equation (1.9), changing the order of integration ans summation (which is easily seen to be justified due to the absolute convergence of the integral and the summations involved in the process) and then evaluating the resulting integral with the help of equation (3.1) and expressing the generalized hypergeometric function ζF_3 in serie, use the following relations $\Gamma(a)(a)_n = \Gamma(a + n)$ and $a = \frac{\Gamma(a + 1)}{\Gamma(a)}$ with $R(a) > 0$. Finally interpreting the result thus obtained with the Mellin-barnes contour integral, we arrive at the desired result.

5. Multivariable I-function

If $\epsilon_1, \epsilon_2, \cdots, \epsilon_r \rightarrow 1$, the Aleph-function of several variables degenerate to the I-function of several variables. The simple integral have been derived in this section for multivariable I-functions defined by Sharma et al [6].

Corollary 1

$$\int_0^a x^{t-1}(a - x)^{t-1} \ln(b \sqrt{x(a - x) + \sqrt{1 + b^2 x(a - x)}}) \left(\begin{array}{c} Z_{1}X_{\eta_1, \epsilon_1} \\ \cdots \\ Z_{r}X_{\eta_r, \epsilon_r} \end{array} \right) \left(\begin{array}{c} Z_{1}X_{\eta_1, \epsilon_1} \\ \cdots \\ Z_{r}X_{\eta_r, \epsilon_r} \end{array} \right) \right) -1 \ln(b \sqrt{x(a - x) + \sqrt{1 + b^2 x(a - x)}}) R_{n_1}^{\alpha, \beta} [z X_{\gamma}; E, F, g, h; p, q; \gamma'; \delta'; e^{-s(z X_{\gamma})}]$$

$$S_{N_1, \cdots, N_r} \left(\begin{array}{c} y_1 X_{\gamma_1, \mu_1} \\ \cdots \\ y_r X_{\gamma_r, \mu_r} \end{array} \right) \prod_{u, v, w, t, e, k_1, k_2} (\eta_{G_1, ... G_r}) \frac{(-1)^{G_1 + \cdots + G_r}}{\delta_{G_1} \cdots \delta_{G_r} G_r!} G(\eta_{G_1, ... G_r})$$

$$a_1 \frac{(-ab)^{2r}}{4^{n'} (3^2)} \eta^{r'} \psi(w, v, u, t, e, k_1, k_2) x_1^{p_1} \cdots x_r^{p_r} y_1^{r_1} \cdots y_r^{r_r}$$

$$z^{RA} a^{RA} (\gamma + \delta) + \sum_{i=1}^{r} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} (\eta_{G_i, g_i} (\alpha_i + \beta_i)) - \ln(a + 1)$$

$$= \left(\begin{array}{c} Z_{1}a^{\eta_1 + \epsilon_1} \\ \cdots \\ Z_{r}a^{\eta_r + \epsilon_r} \end{array} \right)$$

$$= \left(\begin{array}{c} \frac{1}{2} - n' - (s + RA \gamma + \sum_{i=1}^{r} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} (\eta_{G_i, g_i} (\alpha_i + \beta_i))) \end{array} \right)$$

$$= \left(\begin{array}{c} \frac{1}{2} - n' + RA (\gamma + \delta) + \sum_{i=1}^{r} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} (\eta_{G_i, g_i} (\alpha_i + \beta_i))) \end{array} \right)$$
\[
\left(\frac{1}{2} - \frac{1}{2} (s^t + t^r \Delta (\gamma + \delta)) + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i} (\alpha_i + \beta_i) \right; \frac{\epsilon_i + \eta_i}{2}, \ldots, \frac{\epsilon_s + \eta_s}{2}) \\
\left(\frac{1}{2} - \frac{1}{2} (s^t + t^r \Delta (\gamma + \delta)) + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i} (\alpha_i + \beta_i) \right; \frac{\epsilon_i + \eta_i}{2}, \ldots, \frac{\epsilon_s + \eta_s}{2}) \\
\left(- \frac{1}{2} (s^t + t^r \Delta (\gamma + \delta)) + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i} (\alpha_i + \beta_i) \right; \frac{\epsilon_i + \eta_i}{2}, \ldots, \frac{\epsilon_s + \eta_s}{2}) \\
\left(- \frac{1}{2} (s^t + t^r \Delta (\gamma + \delta)) + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i} (\alpha_i + \beta_i) \right; \frac{\epsilon_i + \eta_i}{2}, \ldots, \frac{\epsilon_s + \eta_s}{2}) \\
\left(\frac{1}{2} - \frac{1}{2} (t^r \Delta (\gamma + \delta) + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i} (\alpha_i + \beta_i) \right; \frac{\epsilon_i + \eta_i}{2}, \ldots, \frac{\epsilon_s + \eta_s}{2}) \\
(4.1) \right)
\]

under the same notationa and conditions that (4.1) with \(\ell_i, \ell_i(1), \ldots, \ell_i(s) \rightarrow 1 \).

6. Aleph-function of two variables

If \(s = 2 \), we obtain the Aleph-function of two variables defined by K.Sharma [8], and we have the following simple integrals.

Corollary 2

\[
\int_0^a x^q \left(a - x \right)^{q-1} \ln \left(b \sqrt{x(a-x)} + \sqrt{1 + b^2 x(a-x)} \right) \sum_{\gamma, \delta} R_n^{\alpha, \beta} [z X_{\gamma, \delta}^A, E, F, g, h, p, q; \gamma', \delta'; e^{-s X_{\gamma, \delta}^A}]
\]

\[
S^{M_1, \ldots, M_t}_{N_1, \ldots, N_t} \left(\begin{array}{c} y_1 X_{\gamma_1, \mu_1} \\
\ldots \\
y_t X_{\gamma_t, \mu_t} \end{array} \right) \sum_{\gamma, \delta} \left(\begin{array}{c} Z_1 X_{\eta_1, \xi_1} \\
\ldots \\
Z_2 X_{\eta_2, \xi_2} \end{array} \right) dx = a^\prime + t^r b
\]

\[
\sum_{G_1, \ldots, G_r = 0}^{\infty} \sum_{g_1 = 0}^{\infty} \sum_{g_2 = 0}^{\infty} \sum_{K_1 = 0}^{\infty} \sum_{K_2 = 0}^{\infty} \frac{(-1)^{G_1 + \cdots + G_r}}{\delta_{g_1} G_1 ! \cdots \delta_{g_r} G_r !} G(\eta_{G_1, g_1}, \ldots, \eta_{G_r, g_r})
\]

\[
a_1 \frac{(\frac{1}{2})_{n'} (\frac{1}{2})_{n'} (-ab)^{2n'}}{4^{n'} \left(\frac{1}{2} \right)_{n'} n!} \psi(w, v, u, t, e, k_1, k_2) x_1^{p_1} \cdots x_s^{p_s} z_1^{\eta_{G_1, \delta_1}} \cdots z_r^{\eta_{G_r, \delta_r}} y_1 y_2 \cdots y_t
\]

\[
z^{RA} a^{RA (\gamma + \delta)} + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i} (\alpha_i + \beta_i) \sum_{\gamma, \delta} \left(\begin{array}{c} Z_1 \eta_{N_1, \xi_1} \\
\ldots \\
Z_2 \eta_{N_2, \xi_2} \end{array} \right)
\]

ISSN: 2231-5373 http://www.ijmttjournal.org Page 153
under the same notation and conditions that (4.1) with \(s = 2 \)

7. I-function of two variables

If \(t_1, t', t'' \to 1 \), then the Aleph-function of two variables degenerates in the I-function of two variables defined by Sharma et al [7] and we obtain the same formula with the I-function of two variables.

Corollary 3

\[
\int_0^a x^s - 1 (a - x)^{t-1} \ln (b \sqrt{x(a - x)} + \sqrt{1 + b^2x(a - x)}) R^{a,\beta}_{\nu}[X_{\gamma,0}, E, F, g, h, p, q, r; \delta'; \delta''; e^{-s(x_{B,0}^\alpha)}] \]

\[
S_{N_1, \ldots, N_t}^{M_1, \ldots, M_t} \left(\begin{array}{c} y_1 X_{\gamma_1, \mu_1} \\
\vdots \\
y_{t} X_{\gamma_t, \mu_t} \end{array} \right) \times \left(\begin{array}{c} Z_1 X_{\alpha_1, \beta_1} \\
\vdots \\
Z_r X_{\alpha_r, \beta_r} \end{array} \right) \left(\begin{array}{c} Z_1 X_{\eta_1, \epsilon_1} \\
\vdots \\
Z_r X_{\eta_2, \epsilon_2} \end{array} \right) \right) \sum_{G_1, \ldots, G_r} \sum_{g_1=0}^{M_1} \cdots \sum_{g_r=0}^{M_r} \frac{(-1)^{g_1 + \cdots + g_r}}{G_1! \cdots G_r!} G(\eta_{G_1, g_1}, \ldots, \eta_{G_r, g_r})
\]

\[
a_1 \left(\frac{1}{2} \right)_{n'} \left(\frac{1}{2} \right)_{n'} (-ab)^{2n'} \psi(w, v, u, t, s, k_1, k_2) x_1^{p_1} \cdots x_s^{p_s} y_1^{n_{G_1, g_1}} \cdots y_r^{n_{G_r, g_r}} K_1 \cdots K_t
\]
8. Conclusion

In this paper we have evaluated a finite integral involving the multivariable Aleph-functions, a class of polynomials of several variables, the general of sequence of functions and the logarithm function with general arguments. The integral established in this paper is of very general nature as it contains Multivariable Aleph-function, which is a general function of several variables studied so far. Thus, the integral established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

[5] Salim T.O. A serie formula of generalized class of polynomials associated with Laplace transform and fractional

Personal address: 411 Avenue Joseph Raynaud
Le parc Fleuri, Bat B
83140, Six-Fours les plages
Tel: 06-83-12-49-68
Department: VAR
Country: FRANCE