Euler type triple integrals involving, general class of polynomials

and multivariable Aleph-function I

F.Y. AYANT

1 Teacher in High School, France

ABSTRACT

The aim of the present document is to evaluate three triple Euler type integrals involving general class of polynomials, special functions and multivariable Aleph-function. Importance of our findings lies in the fact that they involve the multivariable Aleph-function, which are sufficiently general in nature and are capable of yielding a large number of simpler and useful results merely by specializing the parameters in them. Further we establish some special cases.

KEYWORDS: Aleph-function of several variables, double Euler type integrals, special function, general class of polynomials.

2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1. Introduction and preliminaries.

The object of this document is to study three triple Eulerian integral involving general class of polynomials, special functions and the multivariables aleph-function. These function generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [4], itself is an a generalisation of G and H-functions of multiple variables. The multiple Mellin-Barnes integral occurring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

We have:

\[R(z_1, \ldots, z_r) = \prod_{j=1}^{r} \Gamma(1 - \alpha_j + \sum_{k=1}^{r} \alpha_j^{(k)} s_k) \prod_{i=1}^{n} \Gamma(1 - b_{ji} + \sum_{k=1}^{r} \beta_{ji}^{(k)} s_k) \]

1.1

We have:

\[\begin{bmatrix} a_j^{(1)}, \alpha_j^{(1)} & \cdots & \alpha_j^{(r)} \\ \beta_j^{(1)} & \cdots & \beta_j^{(r)} \end{bmatrix}_{n+1, p+1} \]

\[\begin{bmatrix} \tau_1(a_{ji}, \alpha_j^{(1)}, \cdots, \alpha_j^{(r)})_{n+1, p+1} \\ \beta_j^{(1)} & \cdots & \beta_j^{(r)} \end{bmatrix}_{m+1, q+1} \]

\[\begin{bmatrix} c_j^{(1)}, \gamma_j^{(1)}_{n+1, p+1} \\ \gamma_j^{(1)}_{p+1, q+1} & \cdots & \gamma_j^{(r)}_{p+1, q+1} \end{bmatrix}_{n+1, p+1} \]

\[\begin{bmatrix} d_j^{(1)}, \delta_j^{(1)}_{m+1, q+1} \\ \delta_j^{(1)}_{m+1, q+1} & \cdots & \delta_j^{(r)}_{m+1, q+1} \end{bmatrix}_{m+1, q+1} \]

\[\frac{1}{(2\pi \omega)^r} \int_{L_1} \cdots \int_{L_r} \psi(s_1, \cdots, s_r) \prod_{k=1}^{r} \theta_k(s_k) z_k^{s_k} \, ds_1 \cdots ds_r \]

(1.1)

with \(\omega = \sqrt{-1} \)

\[\psi(s_1, \cdots, s_r) = \frac{\prod_{j=1}^{n} \Gamma(1 - \alpha_j + \sum_{k=1}^{r} \alpha_j^{(k)} s_k)}{\sum_{i=1}^{n+r} \Gamma(1 - a_{ji} - \sum_{k=1}^{r} \alpha_j^{(k)} s_k) \prod_{j=1}^{n} \Gamma(1 - b_{ji} + \sum_{k=1}^{r} \beta_j^{(k)} s_k)} \]

(1.2)
and \(\theta_k(s_k) = \frac{\prod_{j=1}^{m_j} \Gamma(\delta_j^{(k)} - \delta_j^{(k)} s_k) \prod_{j=1}^{n_j} \Gamma(1 - c_j^{(k)} + \gamma_j^{(k)} s_k)}{\sum R(j) \prod_{j=m_j+1}^{n_j} \Gamma(1 - d_j^{(k)} + \delta_j^{(k)} s_k) \prod_{j=n_j+1} \Gamma(\gamma_j^{(k)} - \gamma_j^{(k)} s_k)}} \) (1.3)

where \(j = 1 \) to \(r \) and \(k = 1 \) to \(r \)

Suppose, as usual, that the parameters

\[
a_j, j = 1, \cdots, p; b_j, j = 1, \cdots, q;
\]

\[
c_j^{(k)}, j = 1, \cdots, n; c_j^{(k)}, j = n + 1, \cdots, p;\]

\[
d_j^{(k)}, j = 1, \cdots, m; d_j^{(k)}, j = m + 1, \cdots, q;\]

are complex numbers, and the \(c_j^{(k)} \)’s, \(\beta_j^{(k)} \)’s, \(\gamma_j^{(k)} \)’s and \(\delta_j^{(k)} \)’s are assumed to be positive real numbers for standardization purposes such that

\[
U_i^{(k)} = \sum_{j=1}^{n} \alpha_j^{(k)} + \tau_i \sum_{j=n+1}^{p} \alpha_j^{(k)} + \sum_{j=1}^{n} \gamma_j^{(k)} + \tau_i \sum_{j=n+1}^{p} \gamma_j^{(k)} - \tau_i \sum_{j=1}^{p} \beta_j^{(k)} - \tau_i \sum_{j=1}^{q} \delta_j^{(k)}
\]

\[
- \tau_i \sum_{j=m_k+1}^{q} \delta_j^{(k)} \leq 0
\] (1.4)

The real numbers \(\tau_i \) are positives for \(i = 1 \) to \(r \), \(\tau_i^{(k)} \) are positives for \(i^{(k)} = 1 \) to \(R^{(k)} \)

The contour \(L_k \) is in the \(s_k \)-plane and run from \(\sigma - \infty \) to \(\sigma + i \infty \) where \(\sigma \) is a real number with loop, if necessary, ensure that the poles of \(\Gamma(1 - a_j + \sum_{i=1}^{n} \alpha_j^{(k)} s_k) \) with \(j = 1 \) to \(m_k \) are separated from those of \(\Gamma(1 - c_j^{(k)} + \gamma_j^{(k)} s_k) \) with \(j = 1 \) to \(n_k \) to the left of the contour \(L_k \). The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H-function given by as:

\[
|\arg z_k| < \frac{1}{2} A_i^{(k)} \pi,
\]

where

\[
A_i^{(k)} = \sum_{j=1}^{n} \alpha_j^{(k)} - \tau_i \sum_{j=n+1}^{p} \alpha_j^{(k)} - \tau_i \sum_{j=1}^{n} \beta_j^{(k)} + \sum_{j=1}^{n} \gamma_j^{(k)} - \tau_i \sum_{j=n+1}^{p} \gamma_j^{(k)} + \sum_{j=1}^{m_k} \delta_j^{(k)} - \tau_i \sum_{j=m_k+1}^{q} \delta_j^{(k)} > 0,
\]

with \(k = 1 \cdots, r; i = 1, \cdots, R; i^{(k)} = 1, \cdots, R^{(k)} \) (1.5)

The complex numbers \(z_i \) are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the asymptotic expansion in the following convenient form:

\[
\Omega(z_1, \cdots, z_r) = 0(|z_1|^\alpha_1 \cdots |z_r|^\alpha_r), \max(|z_1| \cdots |z_r|) \to 0
\]

\[
\Omega(z_1, \cdots, z_r) = 0(|z_1|^\beta_1 \cdots |z_r|^\beta_r), \min(|z_1| \cdots |z_r|) \to \infty
\]
where, with \(k = 1, \ldots, r \):
\[\alpha_k = \min[\text{Re}(d_j^{(k)}/\delta_j^{(k)})], j = 1, \ldots, m_k \]
and
\[\beta_k = \max[\text{Re}((c_j^{(k)}/\gamma_j^{(k)})], j = 1, \ldots, n_k \]

We will use these following notations in this paper:
\[
U = p, q; R \ ; V = m, n; \cdots; m_r, n_r
\]
\[
W = p^{(1)}, q^{(1)}; R^{(1)}; \cdots; p^{(r)}, q^{(r)}; R^{(r)}
\]
\[
A = \{ (a_j, \alpha_j^{(1)}, \cdots, \alpha_j^{(r)})_1, n \}, \{ \tau_i(a_j, \alpha_j^{(1)}, \cdots, \alpha_j^{(r)})_{n+1, p_i} \}
\]
\[
B = \{ \tau_i(b_j, \beta_j^{(1)}, \cdots, \beta_j^{(r)})_{m+1, q_i} \}
\]
\[
C = \{ (c_j^{(1)}, \gamma_j^{(1)})_1, m \}, \{ \tau_i(c_j^{(1)}, \gamma_j^{(1)})_{m+1, p_i} \}, \cdots, \{ (c_j^{(r)}, \gamma_j^{(r)})_1, n \}, \{ \tau_i(c_j^{(r)}, \gamma_j^{(r)})_{n+1, p_i} \}
\]
\[
D = \{ (d_j^{(1)}, \delta_j^{(1)})_1, m \}, \{ \tau_i(d_j^{(1)}, \delta_j^{(1)})_{m+1, p_i} \}, \cdots, \{ (d_j^{(r)}, \delta_j^{(r)})_1, n \}, \{ \tau_i(d_j^{(r)}, \delta_j^{(r)})_{n+1, p_i} \}
\]

The multivariable Aleph-function write:

\[
\Psi(z_1, \cdots, z_r) = \Psi(z_1; \cdots; z_r) = \frac{A}{C} = \frac{B}{D}
\]

Srivastava [5] introduced the general class of polynomials:

\[
S^M_N(x) = \sum_{k=0}^{[N/M]} \frac{(-N)^M k}{k!} A_{N,k} x^k, N = 0, 1, 2, \ldots
\]

Where \(M \) is an arbitrary positive integer and the coefficient \(A_{N,k} \) are arbitrary constants, real or complex.

By suitably specialized the coefficient \(A_{N,k} \) the polynomials \(S^M_N(x) \) can be reduced to the classical orthogonal polynomials such as Jacobi, Hermite, Legendre and Laguerre polynomials etc.

2. Results required:

a) \[
\int_0^1 x^{c-1}(1-x)^{-1/2} F_1(a, b; a+b+1/2; x) dx = \frac{\pi \Gamma(c) \Gamma(a+b+1/2) \Gamma(c-a-b+1/2)}{\Gamma(a+1) \Gamma(b+1/2) \Gamma(c-a+1/2) \Gamma(c-b+1/2)}
\]

Where \(\text{Re}(c) > 0, \text{Re}(2c-a-b) > -1 \), see Vyas and Rathie [7].

Erdélyi [1] [p.78, eq.(2.4) (1), vol 1]

b) \[
\int_0^1 \int_0^1 t^{c-b-1}(1-t)^{c-a-1}(1-r)^{c-a-1}(1-trz)^{-c} dr dt
\]

\[
= \frac{\Gamma(a) \Gamma(b) \Gamma(c-a) \Gamma(c-b)}{[\Gamma(c)]^2} F_1(a, b; c; z)
\]

\(\text{Re}(a) > 0, \text{Re}(b) > 0, \text{Re}(c-a) > 0, \text{Re}(c-b) > 0 \)
3. Main results

\[a) \int_0^1 \int_0^1 \int_0^1 x^{\gamma-1} (1-x)^{-1/2} x F_1(a, b; a + b + 1/2; x) y^\beta z^\alpha (1-y)^{\lambda-1} (1-z)^{\mu-1} (1-yzt)^{-\lambda} \]

\[S_N^{M} (y_1 x^{\gamma_1} y_2 z^{\gamma_2} (1-y)^{\mu_1} (1-z)^{\mu_2} (1-yzt)^{-\mu_1}) \]

\[\Re(\beta) > 0, \Re(\alpha) > 0, \Re(\gamma - \alpha) > 0, \Re(\gamma' - \beta') > 0 \]

\[\text{Where } U_64 = p_i + 6, q_i + 4, \tau_i; R \]
Provided that:

1) \(\text{Re}(c + c_1 J + \sigma_1 s_1 + \cdots + \sigma_r s_r) > 0; \text{Re}(2(c + c_1 J + \sigma_1 s_1 + \cdots + \sigma_r s_r) - a - b) > -1 \)

2) \(\text{Re}(\beta + \rho J + \rho_1 s_1 + \cdots + \rho_r s_r) > 0; \text{Re}(\alpha + \zeta J + \zeta_1 s_1 + \cdots + \zeta_r s_r) > 0 \)

3) \(\text{Re}(\lambda + \mu J + \eta_1 s_1 + \cdots + \eta_r s_r - (\beta + J + \rho_1 s_1 + \cdots + \rho_r s_r)) > 0 \)

4) \(\text{Re}(\lambda + \mu J + \eta_1 s_1 + \cdots + \eta_r s_r - (\alpha + \zeta J + \zeta_1 s_1 + \cdots + \zeta_r s_r)) > 0 \)

5) \(|\arg z_k| < \frac{1}{2} A_i^{(k)} \pi, \) where \(A_i^{(k)} \) is given in (1.5)

\[
\int_0^1 \int_0^1 \int_0^1 \frac{1}{(1-x)^{-1/2} y^{\beta-1} z^{\alpha-1} (1-y)^{\lambda-\beta-1} (1-z)^{\mu-\alpha-1}} (1-u y - v z)^{-n} S_N^M (y_1 x^{\gamma_1} y_2 z^{\gamma_2} (1-y)^{\gamma_3} (1-z)^{\gamma_4} (1-u y - v z)^{-\omega})
\]

\[
= \frac{\pi \Gamma(a + b + 1/2)}{\Gamma(a + 1/2) \Gamma(b + 1/2)} \sum_{j=0}^{N/M} \sum_{k,m=0}^{\infty} \frac{u^k v^m (\alpha - \gamma_j)^{j} \gamma_j}{k! m!} A_{N,j} y_j^{\beta} z_j^{\alpha} (1-y)^{\gamma_1} (1-z)^{\gamma_2} (1-u y - v z)^{-\omega}
\]

\[
\left(1 - c_1 J; \sigma_1, \cdots, \sigma_r, \right) \left(1/2 - c + a + b - c_1 J; \sigma_1, \cdots, \sigma_r, \right) \left(1 - \alpha - \zeta J - m; \zeta_1, \cdots, \zeta_r, \right)
\]

\[
\left(1/2 - c - c_1 J + a; \sigma_1, \cdots, \sigma_r, \right) \left(1/2 - c + b - c_1 J; \sigma_1, \cdots, \sigma_r, \right) \left(1 - \omega J; \eta_1, \cdots, \eta_r, \right)
\]

\[
\left(1 - \alpha - c J + \beta J; \eta_1, \cdots, \eta_r - \rho_r, \right) \left(1 - \mu + \alpha - \zeta J - m; \zeta_1, \cdots, \eta_r - \zeta_r, \right)
\]

\[
\left(1 - \omega J - k - m; \eta_1, \cdots, \eta_r, \right)
\]

\[
\left(1 - \alpha - c J + \beta J; \eta_1, \cdots, \eta_r - \rho_r, \right) \left(1 - \mu - \zeta J; m_1, \cdots, m_r \right) \left(1 - \eta J; t_1, \cdots, t_r \right)
\]

Where \(U_{75} = p_i + 7, q_i + 5, \tau_i; R \)

Provided that:

1) \(\text{Re}(c + c_1 J + \sigma_1 s_1 + \cdots + \sigma_r s_r) > 0; \text{Re}(2(c + c_1 J + \sigma_1 s_1 + \cdots + \sigma_r s_r) - a - b) > -1 \)

2) \(\text{Re}(\beta + \rho J + \rho_1 s_1 + \cdots + \rho_r s_r) > 0; \text{Re}(\alpha + \zeta J + \zeta_1 s_1 + \cdots + \zeta_r s_r) > 0 \)

3) \(\text{Re}(\lambda + \mu J + \eta_1 s_1 + \cdots + \eta_r s_r - (\beta + J + \rho_1 s_1 + \cdots + \rho_r s_r)) > 0 \)

4) \(\text{Re}(\mu + \zeta J + \zeta_1 s_1 + \cdots + \zeta_r s_r - (\alpha + \zeta J + \zeta_1 s_1 + \cdots + \zeta_r s_r)) > 0 \)

5) \(|\arg z_k| < \frac{1}{2} A_i^{(k)} \pi, \) where \(A_i^{(k)} \) is given in (1.5)
\[
\begin{align*}
&c) \int_0^1 \int_0^1 \int_0^1 x^{\alpha-1} (1-x)^{-1/2} F_1(a, b; a+b+1/2; x) y^{\gamma-1} z^{\beta-1} (1-y)^{\lambda-\alpha-1} (1-z)^{\mu-\beta-1} \\
&(1-uy)^{\pi-\lambda-\mu+1} (1-vz)^{\beta-\lambda-\mu+1} (1-ux-vy)^{\lambda+\mu-\alpha-\beta-1} \\
&S_M^{1}(y_{1}x^\rho y^\rho z^\rho (1-y)^{\eta-\rho} (1-z)^{t-\zeta} (1-uy)^{\rho-\eta-t} (1-vz)^{\zeta-\eta-t} (1-uy-vz)^{\eta+t-\rho-\zeta}) \\
&= \frac{\pi \Gamma(a+b+1/2)}{\Gamma(a+1/2) \Gamma(b+1/2)} \sum_{J=0}^{[N/M]} \sum_{k,m=0}^{\infty} \frac{u^k (1-v)^k v^m (1-u)^m (-N)^{M,J}_{M,J} A_N,J y_{1}y_{1}^{N/M+6:V}}{J!} Z_i \\
&(1-\beta - \zeta J - k; \zeta_1, \ldots, \zeta_r), \\
&(1-\eta - \rho J - k; \eta_1, \ldots, \eta_r), \\
&(1-\lambda - (\eta - \rho) J - k; \lambda_1, \ldots, \lambda_r), \\
&(1-\mu - (\zeta + J - m) J - \beta - t J - \beta; t_1 - \zeta_1, \ldots, t_r - \zeta_r), \\
&(1-\lambda - \eta J + \rho J; \eta - \rho_1, \ldots, \eta - \rho_r), \\
&(1-\mu - t J + \zeta J - m; t_1, \ldots, t_r), \\
&(1-\alpha - k - \rho J - m; \rho_1, \ldots, \rho_r), A : C \\
&B : D \\
\end{align*}
\]
Where \(U_{64} = p_i + 6, q_i + 4, \tau_i; R\)

Provided that:

1) \(Re(c + \sigma J + \sigma_1 s_1 + \cdots + \sigma_r s_r) > 0; Re(2(c + \sigma J + \sigma_1 s_1 + \cdots + \sigma_r s_r) - a - b) > -1\)

2) \(Re(\alpha + \rho J + \rho_1 s_1 + \cdots + \rho_r s_r) > 0; Re(\beta + \zeta J + \zeta_1 s_1 + \cdots + \zeta_r s_r) > 0\)

3) \(Re(\lambda + \eta J - \rho J + \eta_1 s_1 + \cdots + \eta_r s_r - (\alpha + \rho J + \rho_1 s_1 + \cdots + \rho_r s_r)) > 0\)

4) \(Re(\mu + t J - \zeta J + t_1 s_1 + \cdots + t_r s_r - (\alpha + \zeta J + \zeta_1 s_1 + \cdots + \zeta_r s_r)) > 0\)

5) \(|arg z_k| < \frac{1}{2} A_1^{(k)} \pi\), where \(A_1^{(k)}\) is given in (1.5)

Proof of (3.1): We first express the multivariable Aleph-function involving in the left hand side of (2.1) in terms of Mellin-Barnes contour integral with the help of (1.1) and then interchanging the order of integration. We get L.H.S.
\[\times \left(\int_0^1 \int_0^1 y^{\beta+pJ+p_1 s_1+\cdots+p_r s_r} z^{\alpha+\zeta J+\zeta_1 s_1+\cdots+\zeta_r s_r} \left(1 - yzt\right)^{-(\lambda+\mu J+\eta_1 s_1+\cdots+\eta_r s_r)} \right) \]
\[\times (1 - y)^{-(\lambda+\mu J+\eta_1 s_1+\cdots+\eta_r s_r) - (\beta+pJ+p_1 s_1+\cdots+p_r s_r) - 1} \]
\[\times (1 - z)^{-(\alpha+\zeta J+\zeta_1 s_1+\cdots+\zeta_r s_r) - 1} \] dy dz ds_1 \cdots ds_r

Now using the result (2.1), (2.2) and (1.1) we get right hand side of (3.1). Similarly we can prove (3.2) and (3.3) with help of the results (2.3) and (2.4).

4. Particular cases

Our main results provided unifications and extensions of various (known or new) results. For the sake illustration, we mention the following few special cases:

(i) If we take \(a = -n, b = n \) in \(\mathbf{2F}_1(a, b; a + b + 1/2; x) \) and using the relationship [2,p.18]
\[\mathbf{2F}_1(a, b; a + b + 1/2; x) = \mathbf{2F}_1(-n, n; 1/2; (1 - (1 - 2x))/2) = T_n(1 - 2x), \]
we get the results involving Tchebcheff polynomial.

(ii) If we take \(a = -n, b = k + n \) in \(\mathbf{2F}_1(a, b; a + b + 1/2; x) \) and using the relationship [2,p.18]
\[\mathbf{2F}_1(a, b; a + b + 1/2; x) = \mathbf{2F}_1(-n, k + n; k + 1/2; x) = P_n^{k+1/2}(x), \]
we get the results involving Jacobi polynomial.

(iii) If we take \(M = 1 \) and \(A_{N,K} = \frac{N + \alpha'}{N} \frac{1}{(\alpha' + 1)K_1} \), then general class of polynomial reduces to Laguerre polynomial and we get the results involving Laguerre polynomial.

Remarks : If \(\tau_i = \tau_{i(k)} = 1 \), then the Aleph-function of several variables degenerates in the I-function of several variables defined by Sharma and Ahmad [4].

And if \(R = R^{(1)} = \cdots = R^{(r)} = 1 \), the multivariable I-function degenerates in the multivariable H-function defined by srivastava et al [6], for more details, see Garg et al [3].

5. Conclusion

The aleph-function of several variables presented in this paper, is quite basic in nature. Therefore, on specializing the parameters of this function, we may obtain various other special functions such as I-function of several variables defined by Sharma and Ahmad [4], multivariable H-function, see Srivastava et al [6], and the h-function of two variables, see Srivastava et al[6].

References :

Personal adress : 411 Avenue Joseph Raynaud
Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE