Common Limit Range property (CLR) and existence of fixed points in Menger Spaces

  IJMTT-book-cover
 
International Journal of Mathematics Trends and Technology (IJMTT)
 
© 2016 by IJMTT Journal
Volume-33 Number-1
Year of Publication : 2016
Authors : P.Srikanth Rao, Veena Kulkarni
  10.14445/22315373/IJMTT-V33P506

MLA

P.Srikanth Rao, Veena Kulkarni "Common Limit Range property (CLR) and existence of fixed points in Menger Spaces", International Journal of Mathematics Trends and Technology (IJMTT). V33(1):25-34 May 2016. ISSN:2231-5373. www.ijmttjournal.org. Published by Seventh Sense Research Group.

Abstract
The aim of this paper is to prove some common fixed-point theorems for occasionally weakly compatible mappings for six self maps in Menger spaces satisfying common limit range property(CLR). Some examples are also given which demonstrate the validity of our results. As an application of our main result, we present a common fixed-point theorem for four finite families of self-mappings in Menger spaces. Our result is an improved probabilistic version of the result of Sedghi et al. [Gen. math. 18:3-12, 2010].

References
1. Banach, S: Surles operations dans les ensembles abstraits et leur application aux equations integrales. Fundam.Math. 3, 133-181 (1922)
2. Hicks, TL: Fixed point theorems for quasi-metric spaces. Math. Jpn. 33(2), 231-236 (1988)
3. Choudhury, BS, Metiya, N: Coincidence point and fixed point theorems in ordered cone metric spaces. J. Adv. Math.Stud. 5(2), 20-31 (2012)
4. Olatinwo, MO, Postolache, M: Stability results for Jungcktype iterative processes inconvex metric spaces. Appl. Math.Comput. 218(12), 6727-6732 (2012)
5. Aydi, H, Karapinar, E, Postolache, M: Tripled coincidence point theorems for weakϕ-contractions in partially ordered metric spaces. Fixed Point Theory Appl. 2012, 44 (2012)
6. Aydi, H, Shatanawi, W, Postolache, M, Mustafa, Z, Tahat, N: Theorems for Boyd-Wong type contractions in ordered metricspaces.Abstr.Appl.Anal.2012, Article ID 359054 (2012)
7. Chandok, S, Postolache, M: Fixed point theorem for weakly Chatterjea-type cyclic contractions. Fixed Point Theory Appl. 2013, 28 (2013)
8. Choudhury, BS, Metiya, N, Postolache, M: A generalized weak contraction principle withapplications to coupled coincidence point problems. Fixed Point Theory Appl. 2013, 152(2013)
9. Shatanawi, W, Postolache, M: Common fixed point results of mappings for nonlinear contractions of cyclic form in ordered metric spaces. Fixed Point Theory Appl. 2013, 60(2013)
10. Aydi, H, Postolache, M, Shatanawi, W: Coupled fixed point results for (ψ, )-weakly contractive mappings in ordered G-metric spaces. Comput. Math. Appl. 63(1), 298- 309(2012)
11. Chandok, S, Mustafa, Z, Postolache, M: Coupled common fixed point theorems for mixedg-monotone mappings in partially ordered G-metric spaces. U. Politeh. Buch. Ser. A75(4), 11-24 (2013)
12. Shatanawi, W, Pitea, A: Fixed and coupled fixed point theorems of omega-distance for nonlinear contraction. Fixed Point Theory Appl. 2013, 275 (2013)
13. Shatanawi, W, Postolache, M: Some fixed point results for a G-weak contraction in G-metric spaces. Abstr. Appl. Anal. 2012, Article ID 815870 (2012)
14. Shatanawi, W, Pitea, A: Omega-distance and coupled fixed point in G-metric spaces.Fixed Point Theory Appl. 2013, 208 (2013)
15. Aydi, H: Fixed point results for weakly contractive mappings in ordered partial metricspaces. J. Adv. Math. Stud. 4(2), 1-12 (2011)
16. Shatanawi, W, Postolache, M: Coincidence and fixed point results for generalized weak contractions in the sense of Berinde on partial metric spaces. Fixed Point Theory Appl. 2013, 54 (2013)
17. Shatanawi, W, Pitea, A: Some coupled fixed point theorems in quasi-partial metricspaces. Fixed Point Theory Appl. 2013, 153 (2013)
18. Grabiec, M: Fixed points in fuzzy metric spaces. Fuzzy Sets Syst. 27, 385-389 (1988)
19. Menger, K: Statistical metrics. Proc. Natl. Acad. Sci. USA 28, 535-537 (1942)
20. Haghi, RH, Postolache, M, Rezapour, S: On T-stability of the Picard iteration for generalized -contraction mappings.Abstr. Appl. Anal. 2012, Article ID 658971 (2012)
21. Miandaragh, MA, Postolache, M, Rezapour, S: Some approximate fixed point results forgeneralized - contractivemappings. U. Politeh. Buch. Ser. A 75(2), 3-10 (2013)
22. Jungck, G, Rhoades, BE: Fixed points for set valued functions without continuity. Indian J. Pure Appl. Math. 29(3),227-238 (1998) MR1617919
23. Singh, B, Jain, S: A fixed point theorem in Menger space through weak compatibility. J. Math. Anal. Appl. 301(2),439-448 (2005)
24. Aamri, M, Moutawakil, DEl: Some new common fixed point theorems under strictcontractive conditions. J. Math.Anal. Appl. 270(1), 181-188 (2002)
25. Kubiaczyk, I, Sharma, S: Some common fixed point theorems in Menger space understrict contractive conditions.Southeast Asian Bull. Math. 32(1), 117-124 (2008)MR2385106 Zbl 1199.54223
26. 26. Pant, RP: Common fixed point theorems for contractive maps. J. Math. Anal. Appl. 226, 251-258 (1998) MR1646430
27. Liu, Y, Wu, J, Li, Z: Common fixed points of singlevalued and multi-valued maps. Int. J. Math. Math. Sci. 19, 3045-3055(2005)
28. Ali, J, Imdad, M, Bahuguna, D: Common fixed point theorems in Menger spaces withcommon property (E.A). Comput. Math. Appl. 60(12), 3152-3159 (2010) MR2739482(2011g:47124) Zbl 1207.54050
29. Abbas, M, Nazir, T, Radenovi , S: Common fixed point of power contraction mappingssatisfying (E.A) property in generalized metric spaces. Appl. Math. Comput. 219, 7663-7670 (2013)
30. Cakic, N, Kadelburg, Z, Radenovic, S, Razani, A: Common fixed point results in conemetric spaces for a family ofweakly compatible maps. Adv. Appl. Math. Sci. 1(1), 183-201 (2009)
31. Jankovic, S, Golubovic, Z, Radenovic, S: Compatible and weakly compatible mappings in cone metric spaces. Math.Comput. Model. 52, 1728-1738 (2010)
32. Kadelburg, Z, Radenovic, S, Rosic, B: Strict contractive conditions and common fixedpoint theorems in cone metric spaces. Fixed Point Theory Appl. 2009, Article ID 173838(2009)
33. Long, W, Abbas, M, Nazir, T, Radenovic, S: Common fixed point for two pairs of mappings satisfying (E.A) property in generalizedmetricspaces.Abstr.Appl.Anal.2012, Article ID 394830 (2012)
34. Ali, J, Imdad, M, Mihe¸t, D, Tanveer, M: Common fixed points of strict contractions in Menger spaces. Acta Math. Hung. 132(4), 367-386 (2011)
35. Altun, I, Tanveer, M, Mihe¸t, D, Imdad, M: Common fixed point theorems of integral type in Menger PM spaces. J. Nonlinear Anal. Optim., Theory Appl. 3(1), 55- 66 (2012)
36. Beg, I, Abbas, M: Common fixed points of weakly compatible and noncommutingmappings in Menger spaces. Int. J. Mod. Math. 3(3), 261-269 (2008)
37. Chauhan, S, Pant, BD: Common fixed point theorem for weakly compatible mappings inMenger space. J. Adv. Res. Pure Math. 3(2), 107-119 (2011)
38. Cho, YJ, Park, KS, Park, WT, Kim, JK: Coincidence point theorems in probabilistic metric spaces. Kobe J. Math. 8(2), 119-131 (1991)
39. Fang, JX: Common fixed point theorems of compatible and weakly compatible maps in Menger spaces. Nonlinear Anal. 71(5-6), 1833-1843 (2009)
40. Fang, JX, Gao, Y: Common fixed point theorems under strict contractive conditions inMenger spaces. Nonlinear Anal. 70(1), 184-193 (2009)
41. Imdad, M, Ali, J, Tanveer, M: Coincidence and common fixed point theorems for nonlinear contractions in Menger PM spaces. Chaos Solitons Fractals 42(5), 3121- 3129(2009) MR2562820 (2010j:54064) Zbl 1198.54076
42. Imdad, M, Tanveer, M, Hassan, M: Some common fixed point theorems in Menger PM spaces. Fixed Point TheoryAppl. 2010, Article ID 819269 (2010)
43. Kumar, S, Chauhan, S, Pant, BD: Common fixed point theorem for noncompatible mapsin probabilistic metric space.Surv. Math. Appl. (in press)
44. Kumar, S, Pant, BD: Common fixed point theorems in probabilistic metric spaces using implicit relation and property(E.A). Bull. Allahabad Math. Soc. 25(2), 223-235 (2010)
45. Kutukcu, S: A fixed point theorem in Menger spaces. Int. Math. Forum 1(32), 1543-1554 (2006)
46. Mihe¸t, D: A note on a common fixed point theorem in probabilistic metric spaces. ActaMath. Hung. 125(1- 2),127-130 (2009)
47. O’Regan, D, Saadati, R: Nonlinear contraction theorems in probabilistic spaces. Appl. Math. Comput. 195(1), 86- 93(2008) MR2379198 Zbl 1135.54315
48. Pant, BD, Abbas, M, Chauhan, S: Coincidences and common fixed points of weaklycompatible mappings in Mengerspaces.J.IndianMath.Soc.80(1-2), 127-139 (2013)
49. Pant, BD, Chauhan, S: A contraction theorem in Menger space. Tamkang J. Math. 42(1),59-68 (2011) MR2815806 Zbl1217.54053
50. Pant, BD, Chauhan, S: Common fixed point theorems for two pairs of weakly compatible mappings in Menger spacesand fuzzy metric spaces. Sci. Stud. Res. Ser. Math. Inform.21(2), 81-96 (2011)
51. Saadati, R, O’Regan, D, Vaezpour, SM, Kim, JK: Generalized distance and common fixed point theorems in Mengerprobabilistic metric spaces. Bull. Iran. Math. Soc. 35(2),97-117 (2009)
52. Schweizer, B, Sklar, A: Statistical metric spaces. Pac. J. Math. 10, 313-334 (1960)
53. Mishra, SN: Common fixed points of compatible mappings in PM-spaces. Math. Jpn. 36(2), 283-289 (1991)
54. Pathak, HK, López, RR, Verma, RK: A common fixed point theorem using implicit relation and property (E.A) in metricspaces. Filomat 21(2), 211-234 (2007)
55. Sedghi, S, Shobe, N, Aliouche, A: A common fixed point theorem for weakly compatiblemappings in fuzzy metricspaces. Gen. Math. 18(3), 3-12 (2010)
56. Jungck, G, Rhoades,B. E. : Fixed Point Theorems For Occasionally WeaklyCompatible Mappings, Fixed Point Theory. 7(2)(2006), 287-296
57. Sintunavarat, W, Kumam, P: Common fixed point theorems for a pair of weaklycompatible mappings in fuzzy metric spaces, Journal of Applied Mathematics, vol.2011, Article ID 637958, 14 pages, 2011.
58. Chauhan, S: Fixed points of weakly compatible mappings in fuzzy metric spaces satisfying common limit in the range property. Indian J. Math. 54(3) (2012) 375-397.
59. Chauhan, S,Dalal, S, Sintunavarat, W, Vujakovic, J: Common property (E.A) and existence of fixed points in Menger spaces, Journal of Inequalities and Applications, vol. 56, 1-14 (2014)

Keywords
t-norm; Menger space; occasionally weakly compatible mappings;property (CLR).