(Sp)* Closed Sets in Topological Spaces

L. Elvina Mary,
Assistant Professor, Nirmala College for Women, Coimbatore.

R.Chitra,
PG student, Nirmala College for Women, Coimbatore.

Abstract:
In this paper we introduce a new class of sets namely, (sp)*-closed sets and properties of this set are investigated. We introduce (sp)*-continuous maps and (sp)*-irresolute maps.

Keywords: (sp)*-closed sets, (sp)*-continuous and (sp)*-irresolute.

1. INTRODUCTION:

2. PRELIMINARIES:
Throughout this paper (X, τ) represents a non-empty topological space on which no separation axioms are assumed unless otherwise mentioned. For a subset A of a topological space (X, τ), cl(A) and int(A) and α Cl(A) denote the closure, interior and α closure of the subset A.
Definition: 2.1

A subset A of a topological space (X, τ) is said to be a

1. **pre-closed[14]** if $\text{cl}(\text{int}(A)) \subseteq A$.

2. **semi-closed[10]** if $\text{int}(\text{cl}(A)) \subseteq A$.

3. **semi-pre-closed[1]** if $\text{int}(\text{cl}(\text{Int}(A))) \subseteq A$.

4. **α-closed[16]** if $\text{cl}(\text{Int}(\text{cl}(A))) \subseteq A$.

5. **g-closed[9]** if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

6. **gsp-closed[7]** if $\text{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

7. **αg-closed[11]** if $\alphacl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

8. **$g\alpha$-closed[12]** if $\alphacl(A) \subseteq U$ whenever $A \subseteq U$ and U is α-open in X.

9. **sg-closed[5]** if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.

10. **gp-closed[13]** if $\text{pcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

11. **α^*-closed[18]** if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is α^*-open in X.

12. **gs-closed[3]** if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

13. **ωg-closed[15]** if $\text{cl}(\text{int}(A)) \subseteq U$ whenever $A \subseteq U$ and U is open in X.

14. **ωg-closed[17]** if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.

Definition: 2.2

A function $f : (X, \tau) \rightarrow (Y, \sigma)$ is called a

1. **α-continuous[16]** if $f^{-1}(V)$ is α-closed in (X, τ) for every closed set V of (Y, σ).

2. **g-continuous[4]** if $f^{-1}(V)$ is g-closed in (X, τ) for every closed set V of (Y, σ).

3. **sg-continuous[5]** if $f^{-1}(V)$ is sg-closed in (X, τ) for every closed set V of (Y, σ).
4. gs-continuous[6] if \(f^{-1}(V) \) is gs-closed in \((X, \tau)\) for every closed set \(V \) of \((Y, \sigma)\).

5. \(\alpha g \)-continuous[8] if \(f^{-1}(V) \) is \(\alpha g \)-closed in \((X, \tau)\) for every closed set \(V \) of \((Y, \sigma)\).

6. \(\alpha g \)-continuous[12] if \(f^{-1}(V) \) is \(\alpha g \)-closed in \((X, \tau)\) for every closed set \(V \) of \((Y, \sigma)\).

7. gsp-continuous[7] if \(f^{-1}(V) \) is gsp- closed in \((X, \tau)\) for every closed set \(V \) of \((Y, \sigma)\).

8. gp-continuous[2] if \(f^{-1}(V) \) is gp-closed in \((X, \tau)\) for every closed set \(V \) of \((Y, \sigma)\).

9. \(\alpha g \)-continuous[15] if \(f^{-1}(V) \) is \(\alpha g \)-closed in \((X, \tau)\) for every closed set \(V \) of \((Y, \sigma)\).

10. \(\alpha^* \)-continuous[18] if \(f^{-1}(V) \) is \(\alpha^* \)-closed in \((X, \tau)\) for every closed set \(V \) of \((Y, \sigma)\).

11. \(\hat{g} \)-continuous[17] if \(f^{-1}(V) \) is \(\hat{g} \)-closed in \((X, \tau)\) for every closed set \(V \) of \((Y, \sigma)\).

3. Basic Properties of \((sp)^*\)-Closed Sets:

We introduce the following definition.

Definition 3.01: A subset \(A \) of a topological space \((X, \tau)\) is said to be \((sp)^*\)-closed if \(cl(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is semi-pre-open in \(X \).

Theorem 3.02: Every closed set is \((sp)^*\)-closed.

Proof follows from the definition.

Theorem 3.03: Every \((sp)^*\)-closed set is gsp-closed.

Proof: Let \(A \) be \((sp)^*\)-closed. Let \(A \subseteq U \) and \(U \) be open. Then \(A \subseteq U \) and \(U \) is semi-pre-open and \(cl(A) \subseteq U \), since \(A \) is \((sp)^*\)-closed. Then \(spcl(A) \subseteq cl(A) \subseteq U \). Therefore \(A \) is gsp-closed.

The converse of the above theorem is not true as seen in the following example.

Example 3.04: Let \(X=\{a,b,c\}, \ \tau = \{\emptyset, \{a\}, \{b,c\}, X\} \) \(A=\{a,b\} \) is gsp-closed but not \((sp)^*\)-closed in \((X, \tau)\).

Theorem 3.05: Every \((sp)^*\)-closed set is \(g \)-closed.

Proof follows from the definition.
The converse of the above theorem is not true as seen in the following example.

Example 3.06: Let $X=\{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. $A=\{a, c\}$ is g-closed but not (sp)*-closed in (X, τ)

Theorem 3.07: Every (sp)*-closed set is gs-closed.

Proof: Let A be (sp)*-closed. Let $A \subseteq U$ and U be open. Then $A \subseteq U$ and U is semi-pre-open and $\text{cl}(A) \subseteq U$, since A is (sp)*-closed. Then $\text{scl}(A) \subseteq \text{cl}(A) \subseteq U$. Hence A is (sp)*-closed.

The converse of the above theorem is not true always as seen in the following example.

Example 3.08: Let $X=\{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. $A=\{c\}$ is gs-closed but not a (sp)*-closed set in (X, τ)

Theorem 3.09: Every (sp)*-closed set is gp-closed.

Proof: Let A be (sp)*-closed. Let $A \subseteq U$ and U be open. Then $A \subseteq U$ and U is semi-pre-open and $\text{cl}(A) \subseteq U$, since A is (sp)*-closed. Then $\text{pcl}(A) \subseteq \text{cl}(A) \subseteq U$. Hence A is gp-closed.

The converse of the above Theorem is not true always as seen in the following example.

Example 3.10: Let $X=\{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. $A=\{a, c\}$ is gp-closed but not (sp)*-closed in (X, τ).

Theorem 3.11: Every (sp)*-closed set is sg-closed.

Proof: Let A be (sp)*-closed. Let $A \subseteq U$ and U be semi-pre-open. Then $A \subseteq U$ and U is semi-pre-open and $\text{cl}(A) \subseteq U$ since A is (sp)*-closed. Then $\text{scl}(A) \subseteq \text{cl}(A) \subseteq U$. Hence A is sg-closed.

The converse of the above theorem is not true in general as it can be seen from the following example.

Example 3.12: Let $X=\{a, b, c\}$, $\tau = \{\phi, \{a\}, X\}$. $A=\{c\}$ is sg-closed but not (sp)*-closed in (X, τ).
Theorem 3.13: Every (sp)*-closed set is \hat{g}-closed.

Proof follows from the definition.

The converse of the above theorem need not be true in general as it can be seen from the following example.

Example 3.14: Let $X=\{a,b,c\}$, $\tau = \{\phi, \{b, c\}, X\}$. $A=\{a,c\}$ is \hat{g}-closed but not (sp)*-closed in (X, τ)

Theorem 3.15: Every (sp)*-closed set is αg-closed.

Proof: Let A be (sp)*-closed. Let $A \subseteq U$ and U be open. Then $A \subseteq U$ and U is semi-pre-open and $cl(A) \subseteq U$, since A is (sp)*-closed. Then $\alpha cl(A) \subseteq cl(A) \subseteq U$. Hence A is αg-closed.

The following example supports that the converse of the above theorem is not true.

Example 3.16: Let $X=\{a,b,c\}$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. $A=\{b\}$ is αg-closed but not (sp)*-closed in (X, τ).

Theorem 3.17: Every (sp)*-closed set is $g\alpha$-closed.

Proof: Let A be (sp)*-closed. Let $A \subseteq U$ and U be open. Then $A \subseteq U$ and U is semi-pre-open and $cl(A) \subseteq U$, since A is (sp)*-closed. Then $\alpha cl(A) \subseteq cl(A) \subseteq U$. Hence A is $g\alpha$-closed.

The converse of the above theorem is not true always as seen in the following example.

Example 3.18: Let $X=\{a,b,c\}$, $\tau = \{\phi, \{a\}, \{b, c\}, X\}$. $A=\{c\}$ is $g\alpha$-closed but not (sp)*-closed in (X, τ).

Theorem 3.19: Every (sp)*-closed set is ωg-closed.

Proof: Let A be (sp)*-closed. Let $A \subseteq U$ and U be open. Then $A \subseteq U$ and U is semi-pre-open and $cl(A) \subseteq U$, since A is (sp)*-closed. Then $\alpha cl(int(A)) \subseteq cl(A) \subseteq U$. Hence A is ωg-closed.

The converse of the above theorem is not true always as seen in the following example.
Example 3.20: Let $X=\{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$. $A = \{b\}$ is ω-closed but not $(sp)^*$-closed in (X, τ).

Theorem 3.21: Every $(sp)^*$-closed set is α^*-closed.

Proof follows from the definition.

The converse of the above theorem is not true as seen in the following example.

Example 3.22: Let $X=\{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{b, c\}, X\}$. $A = \{c\}$ is α^*-closed but not $(sp)^*$-closed in (X, τ).

Theorem 3.23: If A and B are $(sp)^*$-closed, then $A \cup B$ is also $(sp)^*$-closed.

Proof: Let A and B be $(sp)^*$-closed sets. Let $A \cup B$ where U is semi-pre-open.

$cl(A \cup B) = cl(A) \cup cl(B) \subseteq U$. Hence $A \cup B$ is $(sp)^*$-closed.

Theorem 3.24: If A is $(sp)^*$-closed set $\ni A \subseteq B \subseteq cl(A)$ then, B is also $(sp)^*$-closed set.

Proof: Let A be $(sp)^*$-closed set and $A \subseteq B \subseteq cl(A)$. Let $B \subseteq U$ where U is semi-pre-open.

$B \subseteq cl(A)$, $cl(B) \subseteq cl(A) \subseteq U$. Hence B is $(sp)^*$-closed.

Theorem 3.25: A is a $(sp)^*$-closed set of (X, τ) if and only if $cl(A) \setminus A$ does not contain any non-empty semi-pre-closed set.

Proof: Necessity: Let F be a semi-pre-closed set of (X, τ) such that $F \subseteq cl(A) \setminus A$. Then $A \subseteq X \setminus F$. A is (sp)-closed and $X \setminus F$ is semi-pre-open, $cl(A) \subseteq X \setminus F$. Since $F \subseteq X \setminus cl(A)$.

So, $F \subseteq (X \setminus cl(A)) \cap (cl(A) \setminus A) = \emptyset$, Therefore $F = \emptyset$.

Sufficiency: Let A be a subset of (X, τ) such that $cl(A) \setminus A$ does not contain any non-empty semi-pre-closed set. Let U be a semi-pre-open set of (X, τ) such that $A \subseteq U$. If $cl(A) \not\subseteq U$, then $cl(A) \cap U^c \neq \emptyset$ and $cl(A) \cap U^c$ is semi-pre-closed. Therefore $\emptyset \neq cl(A) \cap U^c \subseteq cl(A) \setminus A$. Therefore $cl(A) \setminus A$ contains a non-empty semi-pre-closed set, which is a contradiction. Therefore $cl(A) \subseteq U$. Therefore A is a $(sp)^*$-closed set.
Theorem 3.26: If A is both semi-pre-open and $(sp)^*$-closed, then A is closed.

Proof: Let A be both semi-pre-open and $(sp)^*$-closed. Let $A \subseteq A$, where A is semi-pre-open. Then $cl(A) \subseteq A$, since A is $(sp)^*$-closed. Therefore A is closed.

The above results can be represented as the following diagram.

![Diagram](image)

where $A \rightarrow B$ represents A implies B, but not B implies A.

4.(sp)*-continuous And (sp)*-irresolute Maps

We introduce the following definition.

Definition 4.01: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called $(sp)^*$-continuous if $f^{-1}(V)$ is a $(sp)^*$-closed set of (X, τ) for every closed set V of (Y, σ).

ISSN: 2231-5373 http://www.ijmttjournal.org Page 74
Theorem 4.02: Every continuous map is (sp)*-continuous.

Theorem 4.03: Every (sp)*-continuous map is gsp-continuous.

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be (sp)*-continuous. Let V be closed set of (Y, σ). Then $f^{-1}(V)$ is a (sp)*-closed, since f is (sp)*-continuous and hence by theorem 3.03, it is gsp-closed in (X, τ). Therefore f is gsp-continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.04: Let $X=Y=\{a,b,c\}$, $\tau=\{X, \phi, \{a\}, \{b,c\}\}$, $\sigma=\{Y, \phi, \{b\}\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be defined by an identity mapping. $f^{-1}\{a,c\}=\{a,c\}$ is gsp-closed but not (sp)*-closed.

Theorem 4.05: Every (sp)*-continuous map is g-continuous.

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be (sp)*-continuous. Let V be closed set of (Y, σ). Then $f^{-1}(V)$ is a (sp)*-closed set of (X, τ), since f is (sp)*-continuous and hence by theorem 3.5, $f^{-1}(V)$ is g-closed in (X, τ). Therefore f is g-continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.06: Let $X=\{a,b,c\}=Y$, $\tau=\{\phi, \{a\}, \{b,c\}, X\}$, $\sigma=\{\phi, \{c\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be defined by an identity mapping. $f^{-1}\{a,c\}=\{a,c\}$ is g-closed but not (sp)*-closed.

Theorem 4.07: Every (sp)*-continuous map is gs-continuous.

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be (sp)*-continuous. Let V be closed set of (Y, σ). Then $f^{-1}(V)$ is a (sp)*-closed set of X, since f is (sp)*-continuous and hence by theorem 3.7, $f^{-1}(V)$ is gs-closed in (X, τ). Therefore f is gs-continuous.

The converse of the above theorem is not true in general as it can be seen in the following example.

Example 4.08: Let $X=\{a,b,c\}=Y$, $\tau=\{\phi, \{a\}, \{b,c\}, X\}$, $\sigma=\{\phi, \{b\}, Y\}$. Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be defined by an identity mapping. $f^{-1}\{a,c\}=\{a,c\}$ is gs-closed but not (sp)*-closed.
Theorem 4.09: Every \((sp)^*\)-continuous map is gp-continuous.

Proof: Let \(f: (X, \tau) \rightarrow (Y, \sigma)\) be \((sp)^*\)-continuous. Let \(V\) be closed set of \((Y, \sigma)\). Then \(f^{-1}(V)\) is a \((sp)^*\)-closed set of \((X, \tau)\), since \(f\) is \((sp)^*\)-continuous and hence by theorem-3.9, \(f^{-1}(V)\) is gp-closed in \((X, \tau)\). Therefore \(f\) is gp-continuous.

The following example supports that the converse of the above theorem is not true.

Example 4.10: Let \(X=\{a, b, c\}=Y, \quad \tau = \{\phi, \{a\}, \{b, c\}, X\}, \quad \sigma = \{\phi, \{c\}, Y\}\). Let \(f: (X, \tau) \rightarrow (Y, \sigma)\) be defined by an identity mapping. \(f^{-1}\{a, b\}=\{a, b\}\) is gp-closed but not \((sp)^*\)-closed.

Theorem 4.11: Every \((sp)^*\)-continuous map is sg-continuous.

Proof: Let \(f: (X, \tau) \rightarrow (Y, \sigma)\) be \((sp)^*\)-continuous. Let \(V\) be closed set of \((Y, \sigma)\). Then \(f^{-1}(V)\) is a \((sp)^*\)-closed set of \((X, \tau)\), since \(f\) is \((sp)^*\)-continuous, and hence by theorem-3.11, \(f^{-1}(V)\) is sg-closed in \((X, \tau)\). Therefore \(f\) is sg-continuous.

The converse of the above theorem is not true always as seen in the following example.

Example 4.12: Let \(X=\{a, b, c\}=Y, \quad \tau = \{\phi, \{a\}, \{b, c\}, X\}, \quad \sigma = \{\phi, \{c\}, Y\}\). Let \(f: (X, \tau) \rightarrow (Y, \sigma)\) be defined by an identity mapping. \(f^{-1}\{b\}=\{b\}\) is sg-closed but not \((sp)^*\)-closed.

Theorem 4.13: Every \((sp)^*\)-continuous map is \(\hat{g}\)-continuous.

Proof: Let \(f: (X, \tau) \rightarrow (Y, \sigma)\) be \((sp)^*\)-continuous. Let \(V\) be closed set of \((Y, \sigma)\). Then \(f^{-1}(V)\) is a \((sp)^*\)-closed set of \((X, \tau)\), since \(f\) is \((sp)^*\)-continuous and hence by theorem-3.13, \(f^{-1}(V)\) is \(\hat{g}\)-closed in \((X, \tau)\). Therefore \(f\) is \(\hat{g}\)-continuous.

The following example supports that the converse of the above theorem is not true.

Example 4.14: Let \(X=\{a, b, c\}=Y, \quad \tau = \{\phi, \{b, c\}, X\}, \quad \sigma = \{\phi, \{a\}, Y\}\). Let \(f: (X, \tau) \rightarrow (Y, \sigma)\) be defined by an identity mapping. \(f^{-1}\{b, c\}=\{b, c\}\) is \(\hat{g}\)-closed but not \((sp)^*\)-closed.
Theorem 4.15: Every (sp)*-continuous map is \(\alpha g \)-continuous.

Proof: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be (sp)*-continuous. Let \(V \) be closed set of \((Y, \sigma) \). Then \(f^{-1}(V) \) is a (sp)*-closed set of \((X, \tau) \), since (sp)*-continuous and hence by theorem 3.15, \(f^{-1}(V) \) is \(\alpha g \)-closed in \((X, \tau) \). Therefore \(f \) is \(\alpha g \)-continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.16: Let \(X=\{a, b, c\} \) = \(Y \), \(\tau = \{\phi, \{a\}, \{b, c\}, X\} \), \(\sigma = \{\phi, \{c\}, Y\} \).

Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be defined by an identity mapping. \(f^{-1}\{a, b\} = \{a, b\} \) is \(\alpha g \)-closed but not (sp)*-closed.

Theorem 4.17: Every (sp)*-continuous map is \(g \alpha \)-continuous.

Proof: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be (sp)*-continuous. Let \(V \) be closed set of \((Y, \sigma) \). Then \(f^{-1}(V) \) is a (sp)*-closed set of \((X, \tau) \), since (sp)*-continuous and hence by theorem 3.17, \(f^{-1}(V) \) is \(g \alpha \)-closed in \((X, \tau) \). Therefore \(f \) is \(g \alpha \)-continuous.

The converse of the above theorem is not true in general it can be seen from the following example.

Example 4.18: Let \(X=\{a, b, c\} \) = \(Y \), \(\tau = \{\phi, \{a\}, \{b, c\}, X\} \), \(\sigma = \{\phi, \{c\}, Y\} \).

Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be defined by an identity mapping. \(f^{-1}\{a, b\} = \{a, b\} \) is \(g \alpha \)-closed but not (sp)*-closed.

Theorem 4.19: Every (sp)*-continuous map is \(\omega g \)-continuous.

Proof: Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be (sp)*-continuous. Let \(V \) be closed set of \((Y, \sigma) \). Then \(f^{-1}(V) \) is a (sp)*-closed set of \((X, \tau) \), since \(f \) is (sp)*-continuous and hence by theorem 3.19, \(f^{-1}(V) \) is \(\omega g \)-closed in \((X, \tau) \). Therefore \(f \) is \(\omega g \)-continuous.

The converse of the above theorem is not true always as seen in the following example.

Example 4.20: Let \(X=\{a, b, c\} \) = \(Y \), \(\tau = \{\phi, \{a\}, \{b, c\}, X\} \), \(\sigma = \{\phi, \{c\}, Y\} \).

Let \(f: (X, \tau) \rightarrow (Y, \sigma) \) be defined by an identity mapping. \(f^{-1}\{a, b\} = \{a, b\} \) is \(\omega g \)-closed but not (sp)*-closed.
Theorem 4.21: Every (sp)*-continuous map is α^*-continuous.

Proof: Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be (sp)*-continuous. Let V be closed set of (Y, σ). Then $f^\dagger(V)$ is a (sp)*-closed set of (X, τ), since (sp)*-continuous and hence by theorem-3.21, $f^\dagger(V)$ is α^*-closed in (X, τ). Therefore f is α^*-continuous.

The converse of the above theorem is not true in general it can be seen from the following example.

Example 4.22: Let $X=\{a,b,c\}=Y$, $\tau = \{\phi, \{a\}, \{b,c\}, X\}$, $\sigma = \{\phi, \{c\}, Y\}$.

Let $f: (X, \tau) \rightarrow (Y, \sigma)$ be defined by an identity mapping. $f^\dagger\{a,b\}=\{a\}$ is α^*-closed but not (sp)*-closed.

Definition 4.23: A function $f: (X, \tau) \rightarrow (Y, \sigma)$ is called (sp)*-irresolute if $f^\dagger(V)$ is a (sp)*-closed set of (X, τ) for every (sp)*-closed set V of (Y, σ).

Theorem 4.24: Every (sp)*-irresolute function is (sp)*-continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.25: Let $X=\{a,b,c\}=Y$, $\tau = \{\phi, \{a\}, \{b,c\}, X\}$, $\sigma = \{\phi, \{a,c\}, Y\}$.

Define $f: (X, \tau) \rightarrow (Y, \sigma)$ by $f(a)=c$, $f(b)=a$ and $f(c)=b$. $f^\dagger\{b\}=\{a\}$ is (sp)-closed in (X, τ). Therefore f is (sp)*-continuous. $\{b,c\}$ is (sp)*-closed in Y. $f^\dagger\{b,c\}=\{a,b\}$ is not (sp)*-closed in (X, τ). Therefore f is not (sp)*-irresolute.

Theorem 4.26: Every (sp)*-irresolute function is gsp-continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.27: Let $X=\{a,b,c\}=Y$, $\tau = \{\phi, \{a\}, \{b,c\}, X\}$, $\sigma = \{\phi, \{a\}, Y\}$.

Define $f: (X, \tau) \rightarrow (Y, \sigma)$ by $f(a)=c$, $f(b)=b$ and $f(c)=a$. $f^\dagger\{b,c\}=\{c\}$ is gsp-closed in (X, τ). Therefore f is gsp-continuous. $\{b,c\}$ is (sp)*-closed in Y. $f^\dagger\{b,c\}=\{a,b\}$ is not (sp)*-closed in (X, τ). Hence f is not (sp)*-irresolute.

Theorem 4.28: Every (sp)*-irresolute function is g-continuous.

The converse of the above theorem is not true as seen in the following example.
Example 4.29: Let \(X=\{a,b,c\}=Y, \ \tau = \{\phi, \{a\}, \{b,c\}, X \} \) \(\sigma = \{\phi, \{a\}, Y\} \).

Define \(f: (X, \tau) \to (Y, \sigma) \) by \(f(a)=c, f(b)=b \) and \(f(c)=a \). \(f^{-1}\{b,c\}=\{c,a\} \) is g-closed in \((X, \tau) \). Therefore \(f \) is \(g \)-continuous. \(\{b,c\} \) is \((sp)^* \)-closed set in \(Y \). \(f^{-1}\{b,c\}=\{a,b\} \) is not \((sp)^* \)-closed in \((X, \tau) \). Hence \(f \) is not \((sp)^* \)-irresolute.

Theorem 4.30: Every \((sp)^* \)-irresolute function is \(gs \)-continuous.

The following example supports that the converse of the above theorem is not true always.

Example 4.31: Let \(X=\{a,b,c\}=Y, \ \tau = \{\phi, \{a\}, \{b,c\}, X \} \) \(\sigma = \{\phi, \{a\}, Y\} \).

Define \(f: (X, \tau) \to (Y, \sigma) \) by \(f(a)=c, f(b)=a \) and \(f(c)=b \). \(f^{-1}\{b,c\}=\{a,b\} \) is gs-closed in \((X, \tau) \).

Therefore \(f \) is gs-continuous. \(\{b,c\} \) is \((sp)^* \)-closed set in \(Y \). \(f^{-1}\{b,c\}=\{a,b\} \) is not \((sp)^* \)-closed in \((X, \tau) \). Hence \(f \) is not \((sp)^* \)-irresolute.

Theorem 4.32: Every \((sp)^* \)-irresolute function is \(gp \)-continuous.

The converse of the above Theorem is not true always as seen in the following example.

Example 4.33: Let \(X=\{a,b,c\}=Y, \ \tau = \{\phi, \{a\}, \{b,c\}, X \} \) \(\sigma = \{\phi, \{a\}, Y\} \).

Define \(f: (X, \tau) \to (Y, \sigma) \) by \(f(a)=b, f(b)=a \) and \(f(c)=c \). \(f^{-1}\{b,c\}=\{a,c\} \) is gp-closed in \((X, \tau) \).

Therefore \(f \) is gp-continuous. \(\{b,c\} \) is \((sp)^* \)-closed set in \(Y \). \(f^{-1}\{b,c\}=\{a,c\} \) is not \((sp)^* \)-closed in \((X, \tau) \). Hence \(f \) is not \((sp)^* \)-irresolute.

Theorem 4.34: Every \((sp)^* \)-irresolute function is \(sg \)-continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.35: Let \(X=\{a,b,c\}=Y, \ \tau = \{\phi, \{a\}, X \} \) \(\sigma = \{\phi, \{b,c\}, Y\} \).

Define \(f: (X, \tau) \to (Y, \sigma) \) by \(f(a)=b, f(b)=c \) and \(f(c)=a \). \(f^{-1}\{a\}=\{b\} \) is sg-closed in \((X, \tau) \).

Therefore \(f \) is sg-continuous. \(\{a\} \) is \((sp)^* \)-closed set in \(Y \). \(f^{-1}\{a\}=\{b\} \) is not \((sp)^* \)-closed in \((X, \tau) \). Hence \(f \) is not \((sp)^* \)-irresolute.

Theorem 4.36: Every \((sp)^* \)-irresolute function is \(g^* \)-continuous.

The converse of the above theorem is not true as seen in the following example.
Example 4.37: Let $X=\{a,b,c\}=Y$, $\tau = \{\emptyset, \{b,c\}, X\}$ $\sigma = \{\emptyset, \{a\}, \{b,c\}, Y\}$.

Define $f: (X, \tau) \rightarrow (Y, \sigma)$ by $f(a)=a$, $f(b)=c$ and $f(c)=b$. $f^{-1}\{a\}=\{a\}$ is g-closed in (X, τ).
Therefore f is g-continuous. $\{b,c\}$ is $(sp)^*$-closed sets in Y. $f^{-1}\{b,c\}=\{c,b\}=\{b,c\}$ is not $(sp)^*$-closed in (X, τ). Hence f is not $(sp)^*$-irresolute.

Theorem 4.38: Every $(sp)^*$-irresolute function is αg-continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.39: Let $X=\{a,b,c\}=Y$, $\tau = \{\emptyset, \{a\}, \{b,c\}, X\}$ $\sigma = \{\emptyset, \{a\}, Y\}$.

Define $f: (X, \tau) \rightarrow (Y, \sigma)$ by $f(a)=c$, $f(b)=a$ and $f(c)=b$. $f^{-1}\{b,c\}=\{a,b\}$ is αg-closed in (X, τ).
Therefore f is αg-continuous. $\{b,c\}$ is $(sp)^*$-closed sets in Y. $f^{-1}\{b,c\}=\{a,b\}$ is not $(sp)^*$-closed in (X, τ). Hence f is not $(sp)^*$-irresolute.

Theorem 4.40: Every $(sp)^*$-irresolute function is $g\alpha$-continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.41: Let $X=\{a,b,c\}=Y$, $\tau = \{\emptyset, \{a\}, \{b,c\}, X\}$ $\sigma = \{\emptyset, \{a\}, Y\}$.

Define $f: (X, \tau) \rightarrow (Y, \sigma)$ by $f(a)=c$, $f(b)=b$ and $f(c)=a$. $f^{-1}\{b,c\}=\{c,a\} = \{a,c\}$ is $g\alpha$-closed in (X, τ).
Therefore f is $g\alpha$-continuous. $\{b,c\}$ is $(sp)^*$-closed set in Y. $f^{-1}\{b,c\}=\{a,b\}$ is not $(sp)^*$-closed in (X, τ). Hence f is not $(sp)^*$-irresolute.

Theorem 4.42: Every $(sp)^*$-irresolute function is αg-continuous.

The converse of the above theorem is not true as seen in the following example.

Example 4.43: Let $X=\{a,b,c\}=Y$, $\tau = \{\emptyset, \{a\}, \{b,c\}, X\}$ $\sigma = \{\emptyset, \{b,c\}, Y\}$.

Define $f: (X, \tau) \rightarrow (Y, \sigma)$ by $f(a)=b$, $f(b)=b$ and $f(c)=a$. $f^{-1}\{a\}=\{b\}$ is αg-closed in (X, τ).
Therefore f is αg-continuous. $\{a\}$ is $(sp)^*$-closed sets in Y. $f^{-1}\{a\}=\{b\}$ is not $(sp)^*$-closed in (X, τ). Hence f is not $(sp)^*$-irresolute.

Theorem 4.44: Every $(sp)^*$-irresolute function is α^*-continuous.

The following example supports that the converse of the above theorem is not true.
Example 4.45: Let \(X=\{a,b,c\}=Y, \tau = \{ \phi, \{a\}, \{b,c\}, X \} \sigma = \{ \phi, \{a\}, Y \} \).

Define \(f: (X, \tau) \to (Y, \sigma) \) by \(f(a)=b, f(b)=a \) and \(f(c)=c \). \(\tau^{-1}\{b,c\} = \{a,c\} \) is g-closed in \((X, \tau) \).

Therefore \(f \) is \(\alpha^* \)-continuous. \(\{b,c\} \) is \((sp)^* \)-closed sets in \(Y \). \(\tau^{-1}\{b,c\} = \{a,c\} \) is not \((sp)^* \)-closed in \((X, \tau) \). Hence \(f \) is not \((sp)^* \)-irresolute.

REFERENCES

