MHD Effects on Composite Slider Bearing Lubricated with Couple-stress Fluids

Biradar Kasinath¹ and B. N. Hanumagowda²

1. Department of Mathematics, Government College, Gulbarga -585 105, India.

2. Department of Mathematics, East Point College of Engineering & Technology, Bangalore - 560049, India.

Abstract

A magneto-hydrodynamic wide composite slider bearing lubricated with couple-stress fluids is numerically analysed. A modified Reynolds equation has been derived to account for the transverse magnetic field in the couple-stress fluid lubrication of wide composite slider bearings. The closed form expressions are obtained for the non-dimensional fluid film pressure, load carrying capacity, frictional force and coefficient of friction. It is found that the fluid film pressure, load carrying capacity, frictional force and coefficient of friction increases as the strength of the magnetic field increases. The results are compared with non-magnetic case.

Keywords: Composite slider bearing, Magnetohydrodynamic, Couplestress.

1. Introduction

Slider bearings are designed for supporting the transverse load in engineering systems. The effect of the couple stress on the Slider bearings was studied by Ramanaiah and Sarker [1]. It is shown that the load-carrying capacity and Frictional force are found to increase but the coefficient of friction decrease as compared to the corresponding Newtonian case. Lin et al. [2] analysed the effect of couple stress on plane inclined slider bearings. It is shown that the effect of couple stress is to increase the steady-state and the dynamic stiffness and damping characteristics. Bujurke et al. [3] studied the effect of couple stress on porous slider bearing and shown that the load carrying capacity increases and coefficient of friction decreases for the
increasing values of couple stress parameter. Several investigators [4-10] have studied the lubrication problems with Stokes [11] couple stress fluid as lubricant.

As most MHD bearing models have been developed from the view point of simplicity of mathematical analysis rather than their practicability hence the study of MHD lubrication is much more involved than that of hydrodynamic lubrication. Shukla [12] studied the effect of MHD on composite slider bearing and shown that the load carrying capacity increases as the applied magnetic field increases. Also it is shown that, the load carrying capacity is greater in the case of composite bearing than that of plain slider bearings. MHD steady and dynamic characteristics of wide tapered-land slider bearings was analysed by Lin [13]. It is shown that the effect of magnetic field increases the load carrying capacity and dynamic coefficient as well as decreases the steady friction parameter. Recently, Naduvinamani et al., [14] analysed the effect of MHD on circular stepped bearings lubricated with couple stress fluids. It is shown that the effect of magnetic field increases the load carrying capacity and also lengthens squeeze film time. Several investigators [15-29] studied the lubrication problems with MHD.

The effect of applied transverse magnetic field on the performance of composite slider bearings lubricated with couple-stress fluid has not been studied so far. Hence in this paper the effects of transverse magnetic field on a wide composite slider bearing with couple-stress fluid is analyzed.

2. Mathematical formulation

The magneto-hydrodynamic wide composite slider bearing with couple-stress fluids with a transverse magnetic field is shown in figure 1. The basic equations governing the hydro-magnetic flow of the couple-stress lubricant are

\[
\mu \frac{\partial^2 u}{\partial y^2} - \eta \frac{\partial^4 u}{\partial y^2 \partial z^2} - \sigma B_0^2 u = \frac{\partial p}{\partial x} + \sigma E_z B_0
\]

(1)
\[
\frac{\partial p}{\partial y} = 0 \quad (2)
\]

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 \quad (3)
\]

\[
\int_{y=0}^{h} (E_c + B_u)dy = 0 \quad (4)
\]

For the wide composite slider bearing, the film thickness can be written as

\[h = h_s + h_2 \quad (5) \]

\[h_s = \begin{cases}
 d \left\{ 1 - \left(\frac{x}{L_1} \right) \right\} & 0 \leq x \leq L_1 \\
 0 & L_1 \leq x \leq L
\end{cases} \]

where \(d \) is the difference of inlet-outlet thickness.

The relevant boundary conditions are

(i) At the upper surface \(y = h \)

\[u = 0, \ v = 0 \text{ (no slip); } \frac{\partial^2 u}{\partial y^2} = 0 \text{ (vanishing of couple stresses)} \quad (6) \]

(ii) At the lower surface \((y = 0) \):

\[u = U, \ v = 0 ; \quad \frac{\partial^2 u}{\partial y^2} = 0 \text{ (vanishing of couple stresses)} \quad (7) \]

3. Solution of the problem

The solution of the equation (1) with boundary conditions (6), (7) and the use of condition (4) is obtained in the form
\[u = \frac{U}{2} \xi_1 - \frac{h^2}{2l \mu M_0^2} \frac{\partial p}{\partial x} \xi_2 \]
\hspace{2cm} (8)

where

\[\xi_1 = \xi_{11} - \xi_{12}, \hspace{0.5cm} \xi_2 = \xi_{13} - \xi_{14} \hspace{1cm} \text{for} \hspace{0.5cm} 4M_0^2l^2/h_2^2 < 1 \]
\hspace{2cm} (9a)

\[\xi_1 = \xi_{21} - \xi_{22}, \hspace{0.5cm} \xi_2 = \xi_{23} - \xi_{24} \hspace{1cm} \text{for} \hspace{0.5cm} 4M_0^2l^2/h_2^2 = 1 \]
\hspace{2cm} (9b)

\[\xi_1 = \xi_{31} - \xi_{32}, \hspace{0.5cm} \xi_2 = \xi_{33} - \xi_{34} \hspace{1cm} \text{for} \hspace{0.5cm} 4M_0^2l^2/h_2^2 > 1 \]
\hspace{2cm} (9c)

\[M_0 = B_0 h_2 (\sigma/\mu)^{1/2} \]

\[\eta/\mu = l^2 \]

The associated relations in equations (9a), (9b) and (9c) are given in the Appendix-A.

The integration of continuity equation (3) over the film thickness and the use of expression (8) for \(u \) and the boundary conditions (6) and (7) gives the modified one dimensional Reynolds equation in the form

\[\frac{\partial}{\partial x} \left(f(h,l,M_0) \frac{\partial p}{\partial x} \right) = 6U \frac{dh}{dx} \]
\hspace{2cm} (10)

where

\[f(h,l,M_0) = \begin{cases}
6h_2^2 \mu M_0^2 \left\{ \frac{A^2 - B^2}{B \tanh Bh} \right\}, & \text{for} \ 4M_0^2l^2/h_2^2 < 1 \\
6h_2^2 \mu M_0^2 \left\{ \frac{2(\cosh(h/\sqrt{2l})+1)}{3\sqrt{2} \sinh(h/\sqrt{2l}) - h/l} \right\}, & \text{for} \ 4M_0^2l^2/h_2^2 = 1 \\
6h_2^2 \mu M_0^2 \left\{ \frac{M_0(CoshAch + CoshBch)}{h_2 (A_2 SinBch + B_2 SinhAch)} - \frac{2l}{h} \right\}, & \text{for} \ 4M_0^2l^2/h_2^2 > 1
\end{cases} \]
\hspace{2cm} (11)

\[A_2 = (B_1 - A_1 \cot \theta) \hspace{0.5cm} B_2 = (A_1 + B_1 \cot \theta) \]
Using the non-dimensional quantities

\[x^* = \frac{x}{L}, \quad P^* = \frac{P \mu L^2}{h^3}, \quad l^* = \frac{2l}{h}, \quad H = \frac{h}{h_2}, \quad L^* = \frac{L_1}{L}, \quad L_2 = \frac{L_2}{L} \]

in equation (10), the nondimensional modified MHD couple-stress Reynolds equation is obtained in the form

\[
\frac{\partial}{\partial x^*} \left[H f^* (H, l^*, M_0) \frac{\partial P}{\partial x^*} \right] = 6\delta \frac{d}{dx^*} \left[1 - \left(x^*/L^* \right) \right] \quad (12)
\]

Where

\[H = h_j^* + 1, \]

\[h_j^* = \begin{cases}
\delta \left\{ 1 - \left(x^*/L^*_j \right) \right\} & 0 \leq x^* \leq L^*_j \\
0 & L^*_j \leq x^* \leq 1
\end{cases} \quad (13)\]

\[
f^* (H, l^*, M_0) = \begin{cases}
\frac{12H}{l^* M_0^2} \left\{ \frac{(A^* - B^*)}{B^*} \tan \frac{B^* H}{l^*} - \frac{B^*}{A^*} \tan \frac{A^* H}{l^*} - \frac{l^*}{H} \right\} & \text{for } M_0 l^* < 1 \\
\frac{12H}{l^* M_0^2} \left\{ \frac{1 + \cosh \left(\frac{\sqrt{2}H}{l^*} \right)}{\left(\sqrt{2} \right) \sinh \left(\frac{\sqrt{2}H}{l^*} \right) - \left(H/l^* \right)} - \frac{l^*}{H} \right\} & \text{for } M_0 l^* = 1 \\
\frac{12H}{l^* M_0^2} \left\{ \frac{M_0 \left(\cos B^* H + \cosh A^* H \right)}{A^* \sin B^* H + B^* \sinh A^* H - \frac{l^*}{H}} - \frac{l^*}{H} \right\} & \text{for } M_0 l^* > 1
\end{cases}
\]

\[A^* = \left(1 + \left(1 - l^* l^*_0 M_0^2 \right) \right)^{1/2} \]

\[B^* = \left(1 - \left(1 - l^* l^*_0 M_0^2 \right) \right)^{1/2} \]

\[A^*_j = \sqrt{2M_0/l^* \cos \left(\theta^*/2 \right)} \quad B^*_j = \sqrt{2M_0/l^* \sin \left(\theta^*/2 \right) \sin^2 \left(\theta^*/2 \right) \theta^* = \tan^{-1} \left(\sqrt{l^* l^*_0 M_0^2} - 1 \right)} \]

\[A^*_2 = (B^*_1 - A^*_1 \cot \theta^*) \quad B^*_2 = (A^*_1 + B^*_1 \cot \theta^*) \]
Twice integration equation (10) with respect to x^* and the use of ambient boundary conditions $P^* = 0$ at $x^* = 0, 1$ gives

$$
P^*_1 = 6 \int_{x^* = 0}^{L^*_1} \frac{\delta(1 - x^*/L^*_1)}{Hf^*(H, l^*, M_0)} dx^* + C \int_{x^* = 0}^{L^*_1} \frac{1}{Hf^*(H, l^*, M_0)} dx^* \quad 0 \leq x^* \leq L^*_1 \tag{15a}
$$

$$
P^*_2 = \frac{C(x^* - 1)}{f^*(1, l^*, M_0)} \quad L^*_1 \leq x^* \leq 1 \tag{15b}
$$

where

$$
C = -6 \int_{x^* = 0}^{L^*_1} \frac{\delta(1 - x^*/L^*_1)}{Hf^*(H, l^*, M_0)} dx^* - \left\{ \int_{x^* = 0}^{L^*_1} \frac{1}{Hf^*(H, l^*, M_0)} dx^* - \int_{x^* = 1}^{L^*_1} \frac{1}{f^*(1, l^*, M_0)} dx^* \right\} \tag{16}
$$

The load per unit width is given by

$$
w = \int_0^L p dx \tag{17}
$$

The dimensionless load carrying capacity W^* is

$$
W^* = \frac{wh^2}{\mu UL^2} = \int_{x^* = 0}^{L^*_1} P^*_1 dx^* + \int_{x^* = L^*_1}^1 P^*_2 dx^* \tag{18}
$$

Using (15a) and (15b) the non dimensional load carrying capacity is obtained in the form

$$
W^* = 6 \int_{x^* = 0}^{L^*_1} \int_{x^* = 0}^{x^*} \delta(1 - x^*/L^*_1) dx^* + C \int_{x^* = 0}^{L^*_1} \frac{1}{Hf^*(H, l^*, M_0)} dx^* \quad \frac{C(1 - L^*_1)^2}{2 f^*(1, l^*, M_0)} \tag{19}
$$

The frictional force on the bearing surface is

$$
F = \int_0^L \left(\tau_{21} \right)_{y=0} dx = \int_0^L \left(-G(h, l, M_0) + \frac{h \hat{c}p}{2 \hat{c}x} \right) dx \tag{20}
$$

where
The non dimensional frictional force is

\[
F^* = -\frac{F_{h_2}}{6\mu UL} = \int_0 \left\{ G(H, I^*, M_0) + \frac{H}{2} \frac{\partial^2 F}{\partial x^2} \right\} dx^*
\]

Where

\[
G^*(H, I^*, M_0) = \begin{cases}
\frac{\mu U M_0^2}{2h_i^2 (A^2 - B^2)} \left[A^2 \coth \left(\frac{Bh}{2I} \right) - B^2 \coth \left(\frac{Ah}{2I} \right) \right] & \text{for } M_0^2 I^2 < 1 \\
\frac{\mu U}{16I^2} \left[h + 3 \sqrt{2I} \sinh \left(\sqrt{2I} h \right) \right] & \text{for } M_0^2 I^2 = 1 \\
\frac{\mu U}{2} \left((K_1 - K_2 \cot \theta) \sinh A h + (K_1 \cot \theta + K_2) \sinh B h \right) \frac{1}{\cosh A h - \cos B h} & \text{for } M_0^2 I^2 > 1
\end{cases}
\]

\[
K_1^* = \sqrt{2M_0^*/l^* \cos \left(\frac{\theta^*}{2} \right)} \left[1 - \left(l^* M_0^*/h_0 \right) \left[1 - 4 \sin^2 \left(\frac{\theta^*}{2} \right) \right] \right]
\]

\[
K_2^* = \sqrt{2M_0^*/l^* \sin \left(\frac{\theta^*}{2} \right)} \left[1 + \left(l^* M_0^*/h_0 \right) \left[1 - 4 \cos^2 \left(\frac{\theta^*}{2} \right) \right] \right]
\]

Using (15a) and (15b) in equation (22) the non dimensional frictional force is obtained in the form

\[
F^* = -\frac{F_{h_2}}{\mu UL} = \left\{ G^* (1, I^*, M_0) - \frac{3C_1}{f^*(1, I^*, M_0)} \right\} (1 - L_i^*)
\]

\[
+ \int_0^{L_i^*} \left\{ G^* (H, I^*, M_0) + \frac{3 \delta (1 - x^*/L_i^*) - 3C_1}{f^*(H, I^*, M_0)} \right\} dx^*
\]

The co-efficient of friction is given by
\[C = \frac{F^*}{W^*} \] \hspace{1cm} (25)

4. Results and discussion

The effect of couple stress and magnetic field is observed through the couple stress parameter \(l^* \) and the Hartmann number \(M_0 \) respectively. The parameter \(l^* \) is the ratio of microstructure size to the radial clearance.

4.1 Pressure

Figure 2 shows the variation of non dimensional film pressure with \(x^* \) for different values of Hartmann number \(M_0 \) and couple stress parameter \(l^* \). It is observed that the non dimensional pressure \(p^* \) increases with increasing value of \(M_0 \) and \(l^* \). The curves corresponding to \(M_0 = 0 \) and \(l^* = 0 \) represents respectively the non-magnetic case and the Newtonian case. Figure 3 shows the variation of non dimensional maximum pressure \(p_{\text{max}}^* \) with \(L_1^* \). It is observed that, the non dimensional maximum pressure increases with \(L_1^* \) until a maximum is obtained, and there after decreases with \(L_1^* \).

4.2 Load carrying capacity

Figure 4 shows the variation of non dimensional load carrying capacity with shoulder parameter \(\delta \) for different values of \(M_0 \) and \(l^* \). It is observed that the non dimensional load carrying capacity increases with increasing value of \(M_0 \) and \(l^* \) as compared to non magnetic case \(M_0 = 0 \) and Newtonian case \(l^* = 0 \). Figure 5 depict the variation of non dimensional maximum load carrying capacity with \(L_1^* \) for different values of \(M_0 \) and \(l^* \). It is observed that the non-dimensional maximum load increases with \(L_1^* \) until a maximum is obtained, and there after decreases with \(L_1^* \).
4.3 Frictional Force

Figure 6 depicts the variation of non dimensional frictional force F^* with shoulder parameter δ for different values of M_0 and l^*. It is observed that the non dimensional frictional force increases with increasing value of M_0 and l^* as compared to non magnetic case and Newtonian case. Figure 7 depicts the variation of non dimensional frictional force F^* with L_{1}^{*} for different values of M_0 and l^*. It is observed that the non-dimensional frictional force decreases with L_{1}^{*} for Newtonian case, further increases with L_{1}^{*} until a maximum is attained, and then after decreases with L_{1}^{*} for non Newtonian case.

4.4 Co-efficient of Friction

Figure 8 shows the variation of non dimensional co-efficient of friction with shoulder parameter δ for different values of M_0 and l^*. It is observed that the non dimensional co-efficient of friction increases with the increasing value of M_0. Further, non dimensional co-efficient of friction decreases with increasing value of l^*. Figure 9 depicts the variation of non dimensional co-efficient of friction with L_{1}^{*}. It is observed that the non dimensional co-efficient of friction decreases with increasing value of L_{1}^{*}.

The relative percentage increase in the non-dimensional load carrying capacity R_{W}^{*}, non-dimensional frictional force R_{F}^{*} and coefficient of friction R_{C} are defined by

$$R_{W}^{*} = \left\{ \left(W_{magnetic}^{*} - W_{non-magnetic}^{*} \right) / W_{non-magnetic}^{*} \right\} \times 100$$

$$R_{F}^{*} = \left\{ \left(F_{magnetic}^{*} - F_{non-magnetic}^{*} \right) / F_{non-magnetic}^{*} \right\} \times 100$$

and

$$R_{C} = \left\{ \left(C_{magnetic}^{*} - C_{non-magnetic}^{*} \right) / C_{non-magnetic}^{*} \right\} \times 100$$

The values of R_{W}^{*}, R_{F}^{*} and R_{C} are listed in Table 1 for various values of l^*, M_0 with $L_{1}^{*} = 0.6$.
$\delta = 1.5$. It is clear that an increase of nearly 132.63%, 348.61% and 92.84% in W^*, F^* and C is observed for $l^* = 0.6$ and $M_0 = 6$.

Numerical Example

For the industrial application the following numerical example of the MHD effect on wide composite slider bearing lubricated with couple-stress fluids is illustrated in table 2. Stokes [11] gives experimental measurements for the material constant η characterizing the couple-stress fluid which accounts for industrial oils with additives.

Conclusions

An analysis of the combined effects of MHD and couple stresses on the wide composite slider bearing is presented in this paper. It is found that the effect of couple stress is to increase the non-dimensional pressure, load carrying capacity and frictional force but decrease the co-efficient of friction. The effect of magnetic field is to increase the non-dimensional pressure, load carrying capacity, frictional and the co-efficient of friction.

Nomenclature

- B_0: applied magnetic field
- C: coefficient of friction
- d: inlet-outlet thickness difference $(h_1 - h_2)$
- F: frictional force
- F^*: non-dimensional frictional force $(=- F h_2 / \mu UL)$
- h: film thickness
- h_1: inlet film thickness
- h_1^*: non-dimensional inlet film thickness
- h_2: outlet film thickness
H non-dimensional film thickness $(= h/h_2)$

l couple stress parameter $(\eta/\mu)^{1/2}$

l^* non-dimensional couple stress parameter $(2l/h_2)$

L Bearing length

M_0 Hartmann number $(= B_0 h_2 (\sigma/\mu)^{1/2})$

p pressure in the film region

P^* non-dimensional pressure $(= ph_2^2 / \mu UL)$

x, y rectangular coordinates

x^* non-dimensional rectangular coordinates $(x^* = x/L)$

u, v velocity components in film region

w load carrying capacity

W^* non-dimensional load carrying capacity $(= -wh_2^2 / \mu UL^2)$

δ non-dimensional inlet-outlet thickness difference (d/h_2)

η material constant characterizing couple stress

μ viscosity coefficient

σ electrical conductivity

Appendix A

\[\xi_{11} = \frac{B^2}{(A^2 - B^2)} \left[\frac{\sinh(Ah/l) - \sinh(Ay/l) - \sinh(A(h-y)/l)}{\sinh(Ah/l)} \right] \]
(A1a)

\[\xi_{12} = \frac{A^2}{(A^2 - B^2)} \left[\frac{\sinh(Bh/l) - \sinh(By/l) - \sinh(B(h-y)/l)}{\sinh(Bh/l)} \right] \]
(A1b)

\[\xi_{13} = \frac{B^2 \left[\sinh(Ah/l) - \sinh(Ay/l) + \sinh(A(h-y)/l) \right]}{\sinh(Ah/l) \left[(B^2/A) \tanh(Ah/2l) - (A^2/B) \tanh(Bh/2l) \right]} \]
(A1c)
\[\xi_{14} = \frac{A^2 \left\{ \text{Sinh} \left(\frac{B h}{l} \right) - \text{Sinh} \left(\frac{B y}{l} \right) + \text{Sinh} \left(\frac{h - y}{l} \right) \right\}}{\text{Sinh} \left(\frac{B h}{l} \right) \left\{ \left(\frac{B^2}{A} \right) \tanh \left(\frac{A h}{2l} \right) - \left(\frac{A^2}{B} \right) \tanh \left(\frac{B h}{2l} \right) \right\}} \]

\[A = \left[\frac{1 + \left\{ 1 - \left(4l^2 M_0^2 / h_0^2 \right) \right\}^{1/2}}{2} \right]^{1/2} \]

\[B = \left[\frac{1 - \left\{ 1 - \left(4l^2 M_0^2 / h_0^2 \right) \right\}^{1/2}}{2} \right]^{1/2} \]

\[\xi_{21} = \frac{\text{Sinh} \left(\frac{(y - h)}{\sqrt{2} l} \right) + \text{Sinh} \left(\frac{y}{\sqrt{2} l} \right) - \text{Sinh} \left(\frac{h}{\sqrt{2} l} \right)}{\text{Sinh} \left(\frac{h}{\sqrt{2} l} \right)} \]

\[\xi_{22} = \frac{y \text{Cosh} \left(\frac{(y - h)}{\sqrt{2} l} \right) + y \text{Cosh} \left(\frac{y}{\sqrt{2} l} \right) - h \text{Cosh} \left(\frac{h}{\sqrt{2} l} \right) - h}{2 \sqrt{2} l \text{Sinh} \left(\frac{h}{\sqrt{2} l} \right)} \]

\[\xi_{23} = \frac{y \text{Sinh} \left(\frac{(y - h)}{\sqrt{2} l} \right) + y \text{Sinh} \left(\frac{y}{\sqrt{2} l} \right) - h \text{Sinh} \left(\frac{y}{\sqrt{2} l} \right)}{6l \text{Sinh} \left(\frac{h}{\sqrt{2} l} \right) - \sqrt{2} h} \]

\[\xi_{24} = \frac{2 \text{Cosh} \left(\frac{(y - h)}{\sqrt{2} l} \right) + 2 \text{Cosh} \left(\frac{y}{\sqrt{2} l} \right) - 2 \text{Cosh} \left(\frac{h}{\sqrt{2} l} \right) - 2}{3 \sqrt{2} \text{Sinh} \left(\frac{h}{\sqrt{2} l} \right) - (h/l)} \]

\[\xi_{31} = \frac{\text{Cosh} A_1 y \text{Cos} B_1 (y - h) - \text{Cos} B_1 y \text{Cosh} A_1 (y - h)}{(\text{Cosh} A_1 h - \text{Cos} B_1 h)} \]

\[\xi_{32} = \frac{\text{Cot} \theta \left\{ \text{Sinh} A_1 y \text{Sin} B_1 (y - h) - \text{Sin} B_1 y \text{Sinh} A_1 (y - h) \right\} + (\text{Cosh} A_1 h - \text{Cos} B_1 h)}{(\text{Cosh} A_1 h - \text{Cos} B_1 h)} \]

\[\xi_{33} = \frac{\text{Cot} \theta \left\{ \text{Sin} B_1 y \text{Sinh} A_1 (y - h) + \text{Sinh} A_1 y \text{Sin} B_1 (y - h) \right\} + (\text{Cos} B_1 h + \text{Cosh} A_1 h)}{(B_1 - A_1 \text{Cot} \theta) \text{Sin} B_1 h + (A_1 + B_1 \text{Cot} \theta) \text{Sinh} A_1 h} \]

\[\xi_{34} = \frac{\text{Cos} B_1 y \text{Cosh} A_1 (y - h) + \text{Cosh} A_1 y \text{Cos} B_1 (y - h)}{(B_1 - A_1 \text{Cot} \theta) \text{Sin} B_1 h + (A_1 + B_1 \text{Cot} \theta) \text{Sinh} A_1 h} \]
\[A_i = \sqrt{M_0/\gamma h_0} \cos(\theta/2) \]
(A3e)

\[B_i = \sqrt{M_0/\gamma h_0} \sin(\theta/2) \]
(A3f)

\[\theta = \tan^{-1}\left(\sqrt{4l^2 M_0^2 / h_0^2 - 1}\right) \]
(A3g)

References

Acknowledgement

The corresponding author sincerely thanks to financial assistance by U.G.C. New Delhi, India. Vide order number F. 41-775/2012(SR) under major project.

Figures

Figure 1 Wide composite slider Bearing.

Figure 2 Variation of non dimensional pressure P^* with x^* for different values of M_0 and l^* with $L_{l^*} = 0.6$, $\delta^* = 1.5$.

Figure 3 Variation of non dimensional maximum pressure P_{max}^* with $L_{l^*}^*$ for different values of M_0 and l^* with $\delta^* = 1.5$.

Figure 4 Variation of non dimensional load carrying capacity W^* with δ for different values of M_0 and l^* with $L_{l^*} = 0.6$.

Figure 5 Variation of non dimensional load carrying capacity W^* with L_{l^*} for different values of M_0 and l^* with $\delta = 1.5$.
Figure 6 Variation of non dimensional frictional force F^* with δ for different values of M_0 and l^* with $L_1^* = 0.6$.

Figure 7 Variation of non dimensional frictional force F^* with L_1^* for different values of M_0 and l^* with $\delta = 1.5$.

Figure 8 Variation of co efficient of friction C with δ for different values of M_0 and l^* with $L_1^* = 0.6$.

Figure 9 Variation of co efficient of friction C with L_1^* for different values of M_0 and l^* with $\delta = 1.5$.

Tables

Table 1 Variation of R_W^*, R_F^* and R_C for different values l^* and M_0 with $L_1^* = 0.7$, $\delta = 1.5$.

Table 2 Numerical example of wide composite slider bearing with MHD and couple-stress fluid

Table 3 MHD and couple stress characteristics W^*, F^*, C and comparison with non magnetic case by Lin et al. [30] with $L_1^* = 0.7$, $l^* = 0.3$.

![Diagram of fluid flow](image-url)
Figure 1 Wide composite slider Bearing.

Figure 2 Variation of non-dimensional pressure P^* with x^* for different values of M_o and l' with $L'_1 = 0.6$, $\delta = 1.5$.

Figure 3 Variation of non-dimensional pressure P_{max}^* with L'_1 for different values of M_o and l' with $\delta = 1.5$.
Figure 4 Variation of non dimensional load carrying capacity W^* with δ for different values M_0 and l^* with $L^*_1 = 0.6$.

Figure 5 Variation of non dimensional load carrying capacity W^* with L^*_1 for different values M_0 and l^* with $\delta = 1.5$.
Figure 6 Variation of non dimensional frictional force F^* with δ for different values M_0 and l^* with $L_1^* = 0.6$.

Figure 7 Variation of non dimensional frictional force F^* with L_1^* for different values M_0 and l^* with $\delta = 1.5$.
Figure 8 Variation of coefficient of friction C with δ for different values M_0 and l^* with $L^*_1 = 0.6$.

Figure 9 Variation of coefficient of friction C with L^*_1 for different values M_0 and l^* with $\delta = 1.5$.
Table 1 Variation of R_W^*, R_F^* and R_C for different values l^* and M_0 with $L_1^* = 0.6, \delta = 1.5$

<table>
<thead>
<tr>
<th>l^*</th>
<th>M_0</th>
<th>R_W^*</th>
<th>R_F^*</th>
<th>R_C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td>41.1280</td>
<td>97.108</td>
<td>39.666</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
<td>117.031</td>
<td>266.938</td>
<td>69.072</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>199.470</td>
<td>445.435</td>
<td>82.133</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>43.2720</td>
<td>103.043</td>
<td>41.718</td>
</tr>
<tr>
<td>6</td>
<td>0.3</td>
<td>134.158</td>
<td>310.523</td>
<td>75.319</td>
</tr>
<tr>
<td>9</td>
<td>0.3</td>
<td>246.104</td>
<td>559.452</td>
<td>90.536</td>
</tr>
<tr>
<td>3</td>
<td>0.6</td>
<td>40.2020</td>
<td>107.408</td>
<td>47.936</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>132.625</td>
<td>348.606</td>
<td>92.844</td>
</tr>
<tr>
<td>9</td>
<td>0.6</td>
<td>250.811</td>
<td>659.618</td>
<td>116.532</td>
</tr>
<tr>
<td>3</td>
<td>0.9</td>
<td>33.5370</td>
<td>107.089</td>
<td>55.079</td>
</tr>
<tr>
<td>6</td>
<td>0.9</td>
<td>225.347</td>
<td>710.871</td>
<td>87.872</td>
</tr>
<tr>
<td>9</td>
<td>0.9</td>
<td>116.270</td>
<td>364.312</td>
<td>61.834</td>
</tr>
</tbody>
</table>

Table 2 Numerical example of wide composite slider bearing with MHD and couple-stress fluid

<table>
<thead>
<tr>
<th>Physical parameter</th>
<th>Notation</th>
<th>Range of values chosen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of the bearing</td>
<td>L</td>
<td>1.00×10^{-1} m</td>
</tr>
<tr>
<td>Length of the inclined part</td>
<td>L_1</td>
<td>$(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1.0) \times 10^{-1}$ m</td>
</tr>
<tr>
<td>Minimum film thickness</td>
<td>h_2</td>
<td>0.5×10^{-4} m</td>
</tr>
<tr>
<td>Inlet-outlet thickness difference</td>
<td>$h_1 - h_2$</td>
<td>$(0.05$ to $0.175) \times 10^{-4}$ m</td>
</tr>
<tr>
<td>Electrical conductivity</td>
<td>σ</td>
<td>$1.07 \times 10^6 \text{mho/m}$</td>
</tr>
<tr>
<td>Applied magnetic field</td>
<td>B_0</td>
<td>$0,1.52,3.04,4.56 \text{Wb/m}^2$</td>
</tr>
<tr>
<td>Lubricant viscosity</td>
<td>μ</td>
<td>$1.55 \times 10^{-3} \text{Pa.s}$</td>
</tr>
<tr>
<td>Couple stress material constant</td>
<td>η</td>
<td>$0,0.3875,1.5562 \times 10^{-13} \text{N.s}$</td>
</tr>
</tbody>
</table>

Table 3 MHD and couple stress characteristics W^*, F^*, C and comparison with non magnetic case (NMC) by Lin et al. [30] with $L_1^* = 0.6, I^* = 0.3$.

<table>
<thead>
<tr>
<th>δ</th>
<th>NMC</th>
<th>Present Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M_0 = 0)</td>
<td>(M_0 = 3)</td>
</tr>
<tr>
<td>0.5</td>
<td>0.166265</td>
<td>0.165845</td>
</tr>
<tr>
<td>1.0</td>
<td>0.193198</td>
<td>0.192877</td>
</tr>
<tr>
<td>1.5</td>
<td>0.186036</td>
<td>0.185804</td>
</tr>
<tr>
<td>2.0</td>
<td>0.170541</td>
<td>0.170374</td>
</tr>
<tr>
<td>2.5</td>
<td>0.154051</td>
<td>0.153931</td>
</tr>
<tr>
<td>0.5</td>
<td>0.934506</td>
<td>0.934399</td>
</tr>
<tr>
<td>1.0</td>
<td>0.92257</td>
<td>0.922422</td>
</tr>
<tr>
<td>1.5</td>
<td>0.915361</td>
<td>0.915209</td>
</tr>
<tr>
<td>2.0</td>
<td>0.906445</td>
<td>0.906304</td>
</tr>
<tr>
<td>2.5</td>
<td>0.895742</td>
<td>0.895616</td>
</tr>
<tr>
<td>0.5</td>
<td>5.62057</td>
<td>5.63418</td>
</tr>
<tr>
<td>1.0</td>
<td>4.77527</td>
<td>4.78242</td>
</tr>
<tr>
<td>1.5</td>
<td>4.92035</td>
<td>4.92566</td>
</tr>
<tr>
<td>2.0</td>
<td>5.31513</td>
<td>5.31949</td>
</tr>
<tr>
<td>2.5</td>
<td>5.81456</td>
<td>5.8183</td>
</tr>
</tbody>
</table>