RW-CONTINUOUS MAPS AND RW-IRRESOLUTE MAPS IN TOPOLOGICAL SPACES

M. Karpagadevi 1, A. Pushpalatha 2
1 Assistant Professor, Karpagam College of Engineering, Coimbatore, India
2 Assistant Professor, Government Arts College, Udumalpet, India

Abstract

In this paper we introduce and study the concept of regular weakly continuity (briefly rw-continuity) and regular weakly irresolute (briefly rw-irresolute) in topological spaces and discuss some of their properties in topological spaces.

Mathematics Subject Classification: 54C05

KEYWORDS: rw-closed set, rw-continuous, rw-irresolute

1. Introduction

Topologist studied weaker and stronger forms of continuous functions in topology using the sets stronger and weaker than open and closed sets. Balachandran et.al [4], Levine [14], Mashhour et.al [16], Gnambah et.al [11] have introduced g- continuity, Semi - continuity, pre- continuity, gpr - continuity respectively.

S.S. Benchalli and R.S Wali [5] introduced new class of sets called regular weakly closed (briefly rw-closed) sets in topological spaces which lies between the class of all w - closed sets and the class of all regular g - closed sets.

The aim of this paper is to introduce and study the concepts of new class of maps namely rw-continuous maps and rw-irresolute maps.

Throughout this paper (X, τ) and (Y,σ) (or simply X and Y) represents the non-empty topological spaces on which no separation axiom are assumed, unless otherwise mentioned. For a subset A of X, cl(A) and int(A) represents the closure of A and interior of A respectively.

2. Preliminaries

In this section we recollect the following basic definitions which are used in this paper.

Definition 2.1 [5]: A subset A of a topological space (X, τ) is called rw-closed (briefly rw-closed) if cl(A) ⊆ U, whenever A ⊆ U and U is regular semiopen in X.

Definition 2.2 [18]: A subset A of a topological space (X, τ) is called regular generalized closed (briefly rg-closed) if cl(A) ⊆ U whenever A ⊆ U and U is regular open in X.

Definition 2.3 [19]: A subset A of a topological space (X, τ) is called weakly closed (briefly w-closed) if cl(A)) ⊆ U whenever A ⊆ U and U is semi open in X.
Definition 2.4 [18]: A map \(f : (X, \tau) \rightarrow (Y, \sigma) \) from a topological space \(X \) into a topological space \(Y \) is called \(rg \) continuous if the inverse image of every closed set in \(Y \) is \(rg \)-closed in \(X \).

Definition 2.5 [19]: A map \(f : (X, \tau) \rightarrow (Y, \sigma) \) from a topological space \(X \) into a topological space \(Y \) is called \(w \)-continuous if the inverse image of every closed set in \(Y \) is \(w \)-closed in \(X \).

Definition 2.6 [6]: A map \(f : (X, \tau) \rightarrow (Y, \sigma) \) from a topological space \(X \) into a topological space \(Y \) is called irresolute if the inverse image of every semi-closed set in \(Y \) is semi-closed in \(X \).

3. RW - continuous mappings

In this chapter we introduce and study rw-continuous mappings in topological spaces.

Definition 3.1: Let \(f : X \rightarrow Y \) from a topological space \(X \) into a topological space \(Y \) is called \(rw \)-continuous if the inverse image of every closed set in \(Y \) is \(rw \) closed in \(X \).

Theorem 3.2: If a map \(f : X \rightarrow Y \) from a topological space \(X \) into a topological space \(Y \) is continuous, then it is \(rw \) continuous but not conversely.

Proof: Let \(f : X \rightarrow Y \) be continuous and \(F \) be any closed set in \(Y \). Then the inverse image \(f^{-1}(F) \) is closed in \(X \). Since every closed set is \(rw \)-closed, \(f^{-1}(F) \) is \(rw \)-closed in \(X \). Therefore \(f \) is \(rw \)-continuous.

Remark 3.3: The converse of the above theorem need not be true as seen from the following example

Example 3.4: Let \(X = Y = \{a,b,c\} \) with topologies \(\tau = \{X, \emptyset, \{a\}, \{a,b\}\} \), \(\sigma = \{Y, \emptyset, \{a\}\} \). Let \(f : X \rightarrow Y \) be a map defined by \(f(a) = a, f(b) = b, f(c) = c \). Here \(f \) is \(rw \) continuous but not continuous since for the closed set \(F = \{a\} \) in \(Y \), \(f^{-1}(F) = \{a\} \) is not closed in \(X \).

Theorem 3.5: If a map \(f : X \rightarrow Y \) from a topological space \(X \) into a topological space \(Y \) is \(rw \)-continuous, then it is \(rg \) continuous but not conversely.

Proof: Let \(f : X \rightarrow Y \) be \(rw \)-continuous and \(F \) be any closed set in \(Y \). Then the inverse image \(f^{-1}(F) \) is \(rw \)-closed in \(X \). Since every \(rw \)-closed set is \(rg \)-closed, \(f^{-1}(F) \) is \(rg \)-closed in \(X \). Therefore \(f \) is \(rg \)-continuous.

Remark 3.6: The converse of the above theorem need not be true as seen from the following example

Example 3.7: Let \(X = Y = \{a,b,c,d\} \) with topologies \(\tau = \{X, \emptyset, \{a\}, \{a,b\}, \{a,b,c\}\}, \sigma = \{Y, \emptyset, \{a\}\} \). Let \(f : X \rightarrow Y \) be a map defined by \(f(a) = a, f(b) = b, f(c) = c \). Here \(f \) is \(rg \) continuous but not \(rw \)-continuous since for the closed set \(F = \{c\} \) in \(Y \), \(f^{-1}(F) = \{c\} \) is not \(rw \)-closed in \(X \).

Theorem 3.8: If a map \(f : X \rightarrow Y \) from a topological space \(X \) into a topological space \(Y \) is \(w \)-continuous, then it is \(rw \) continuous but not conversely.

Proof: Let \(f : X \rightarrow Y \) be \(w \)-continuous and \(F \) be any closed set in \(Y \). Then the inverse image \(f^{-1}(F) \) is \(w \)-closed in \(X \). Since every \(w \)-closed set is \(rw \)-closed, \(f^{-1}(F) \) is \(rw \)-closed in \(X \). Therefore \(f \) is \(rw \)-continuous.

Remark 3.9: The converse of the above theorem need not be true as seen from the following example

Example 3.10: Let \(X = Y = \{a,b,c\} \) with topologies \(\tau = \{X, \emptyset, \{a\}, \{a,b\}\} \), \(\sigma = \{Y, \emptyset, \{a\}\} \). Let \(f : X \rightarrow Y \) be a map defined by \(f(a) = a, f(b) = b, f(c) = c \). Here \(f \) is \(rw \) continuous but not \(w \)-continuous since for the closed set \(F = \{a\} \) in \(Y \), \(f^{-1}(F) = \{a\} \) is not \(w \)-closed in \(X \).

Theorem 3.11: A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is \(rw \)-continuous if and only if \(f^{-1}(U) \) is \(rw \)-open in \((X, \tau)\) for every open set \(U \) in \((Y, \sigma) \).
Proof: Let \(f: (X, \tau) \to (Y, \sigma) \) be \(\text{rw}-\)continuous and \(U \) an open set in \((Y, \sigma) \). Then \(f^{-1}(U) \) is \(\text{rw}-\)closed in \((X, \tau) \). But \(f^{-1}(U) = (f^{-1}(U))^c \) and so \(f^{-1}(U) \) is \(\text{rw}-\)open in \((X, \tau) \).

Theorem 3.12: If \(f: X \to Y \) and \(g: Y \to Z \) be any two functions, then \(g \circ f: X \to Z \) is \(\text{rw}-\)continuous if \(g \) is continuous and \(f \) is \(\text{rw}-\)continuous.

Proof: Let \(F \) be any closed set in \(Z \). Since \(g \) is continuous, \(g^{-1}(F) \) is closed in \(Y \) and since \(f \) is \(\text{rw}-\)continuous, \(f^{-1}(g^{-1}(F)) \) is \(\text{rw}-\)closed in \(X \). Hence \((g \circ f)^{-1} \) is \(\text{rw}-\)closed in \(X \). Thus \(g \circ f \) is \(\text{rw}-\)continuous.

Remark 3.13: The Composition of two \(\text{rw}-\)continuous maps need not be \(\text{rw}-\)continuous. Let us prove the remark by the following example.

Example 3.14: Let \(X = Y = Z = \{a, b, c\} \) with topologies \(\tau = \{X, \emptyset, \{a, b\}, \{b\}\} = \sigma = \{Y, \emptyset, \{b\}, \{a, b\}\}, \eta = \{Z, \emptyset, \{a, c\}, \{c\}\} \). Let \(g: (X, \tau) \to (Y, \sigma) \) and \(f: (Z, \eta) \to (X, \tau) \) be a map defined by \(g(a) = b, g(b) = b, g(c) = c \). Let \(f = (Z, \eta) \to (X, \tau) \) be any open set of \((Z, \eta) \). Here \(\{c\} \) is closed set of \((Y, \sigma) \). Therefore \(g \circ f \) is not \(\text{rw}-\)continuous.

Theorem 3.15: Let \(f: X \to Y \) be a \(\text{rw}-\)continuous map from a topological space \(X \) into a topological space \(Y \) and let \(H \) be a closed subset of \(X \). Then the restriction \(f|H: H \to Y \) is \(\text{rw} \)– continuous where \(H \) is endowed with the relative topology.

Proof: Let \(F \) be any closed subset in \(Z \). Since \(f \) is \(\text{rw}-\)continuous, \(f^{-1}(F) \) is \(\text{rw}-\)closed in \(X \). If \(f^{-1}(F) \cap H = H_1 \) then \(H_1 \) is a \(\text{rw}-\)closed set in \(X \), since the intersection of two \(\text{rw}-\)closed sets is \(\text{rw}-\)closed. Since \(f|H \) is \(\text{rw}-\)continuous, \((f|H)^{-1}(F) = H_1 \) it is sufficient to show that \(H_1 \) is \(\text{rw}-\)closed in \(H \). Let \(G_1 \) be any open set of \(H \) such that \(G_1 \) contains \(H_1 \). Let \(G_1 = G \cap H \) where \(G \) is open in \(X \). Now \(H_1 \subseteq G \cap H \subseteq G \cap H \subseteq G \cap H = G_1 \) since \(H_1 \) is \(\text{rw}-\)closed in \(X \). Hence \(f\mid H \) is \(\text{rw}-\)continuous.

Theorem 3.16: Let \(f: X \to Y \) be a map from a topological space \(X \) into a topological space \(Y \)

i) The following statements are equivalent
 a) \(f \) is \(\text{rw}-\)continuous
 b) The inverse image of each open set in \(Y \) is \(\text{rw}-\)open in \(X \).
 ii) If \(f: X \to Y \) is \(\text{rw}-\)continuous then \(f(\text{rw cl}(A)) \subseteq \text{cl}(f(A)) \) for every subset \(A \) of \(X \).
 iii) The following statements are equivalent
 a) For each point \(x \) in \(X \) and each open set \(V \) in \(Y \) with \(f(x) \in V \), there is a \(\text{rw}-\)open set \(U \) in \(X \) such that \(x \in U \setminus V \), \(f(U) \subseteq V \).
 b) For every subset \(A \) of \(X \), \(f(\text{rw cl}(A)) \subseteq \text{cl}(f(A)) \).
 c) For each subset \(B \) of \(Y \), \(f^{-1}(\text{rw cl}(B)) \subseteq \text{cl}(f^{-1}(B)) \).

Proof: i) Assume that \(f: X \to Y \) be \(\text{rw}-\)continuous. Let \(G \) be open in \(Y \). Then \(G^c \) is closed in \(Y \). Since \(f \) is \(\text{rw}-\)continuous, \(f^{-1}(G^c) \) is \(\text{rw}-\)closed in \(X \). But \(f^{-1}(G^c) = X - f^{-1}(G) \). Thus \(X - f^{-1}(G) \) is \(\text{rw}-\)closed in \(X \) and so \(f^{-1}(G) \) is \(\text{rw}-\)open in \(X \). Therefore (a) implies (b).

Conversely assume that the inverse image of each open set in \(Y \) is \(\text{rw}-\)open in \(X \). Let \(F \) be any closed set in \(Y \). Then \(F^c \) is open in \(Y \). By assumption, \(f^{-1}(F^c) \) is \(\text{rw}-\)open in \(X \). But
f^{-1}(F^c) = X - f^{-1}(F). Thus X - f^{-1}(F) is rw-open in X and so f^{-1}(F) is rw-closed in X. Therefore f is rw-continuous. Hence (b) implies (a). Thus (a) and (b) are equivalent.

ii) Since A \subseteq f^{-1}(f(A)), we have A \subseteq f^{-1}(cl(f(A))). Now cl(f(A)) is a closed set in Y and hence f^{-1}(cl(f(A))) is a rw-closed set containing A. Consequently

\(\text{rw cl}(A) \subseteq f^{-1}(\text{cl}(f(A))). \) Therefore \(f(\text{rw cl}(A)) \subseteq f^{-1}(\text{cl}(f(A))) \).

Conversely if (b) holds and let x \in X a n d \text{let } V be any open set containing f(x).

A. Since f(f^{-1}(V)) \subseteq V \subseteq \text{cl}(\text{f}(A)) \subseteq \text{cl}(A) = A \text{ and hence f(U) holds and hence f}(A) \nsubseteq V \because \text{Therefore we have } y = f(x) \in \text{c l}(f(A)).

4. RW - irresolute mappings

Definition 4.1: Let f: X \rightarrow Y from a topological space X into a topological space Y is called rw-irresolute if the inverse image of every rw-closed set in Y is rw-closed in X.

Theorem 4.2: A map f: X \rightarrow Y is rw-irresolute if and only if the inverse image of every rw-open set in Y is rw-open in X.

Proof: Assume that f is rw-irresolute. Let A be any rw-open set in Y. Then A^c is rw-closed set in Y. Since f is rw-irresolute, f^{-1}(A^c) is rw-closed in X. But f^{-1}(A^c) = X - f^{-1}(A) and so f^{-1}(A) is rw-open in X. Hence the inverse image of every rw-open set in Y is rw-open in X.

Conversely assume that the inverse image of every rw-open set in Y is rw-open in X. Let A be any rw-closed set in Y. Then A^c is rw-open in Y. By assumption, f^{-1}(A^c) is rw-open in X. But f^{-1}(A^c) = X - f^{-1}(A) and so f^{-1}(A) is rw-closed in X. Therefore f is rw-irresolute.

Theorem 4.3: If a map f: X \rightarrow Y is rw-irresolute, then it is rw-continuous but not conversely.

Proof: Assume that f is rw-irresolute. Let F be any closed set in Y. Since every closed set is rw-closed, F is rw-closed in Y. Since f is rw-irresolute, f^{-1}(F) is rw-closed in X. Therefore f is rw-continuous.

Remark 4.4: The converse of the above theorem need not be true as seen from the following example.

Example 4.5: Let X = \{a,b,c\} with topologies \(\tau = \{X,\emptyset,\{a\},\{a,c\} \} \) and \(\sigma = \{Y,\emptyset,\{b\},\{b,c\},\{c\} \} \). Let f: X \rightarrow Y be a map defined by f(a) = a, f(b) = b, f(c) = c. Here f is rw-continuous. However \{a\} is rw-closed in Y but f^{-1}(a) = \{a\} is not rw-closed in X. Therefore f is not rw-irresolute.
Theorem 4.6: Let X, Y and Z be any topological spaces. For any rw-irresolute map f: X → Y and any rw-continuous map g: Y → Z, the composition g ∘ f: (X, τ) → (Z, η) is rw-continuous.

Proof: Let F be any closed set in Z. Since g is rw-continuous, g^−1(F) is rw-closed in Y. Since f is rw-irresolute, f^−1(g^−1(F)) is rw-closed in X. But f^−1(g^−1(F)) = (g ∘ f)^−1. Therefore g ∘ f: X → Z is rw-continuous.

Remark 4.7: The irresolute maps and rw-irresolute maps are independent of each other. Let us prove the remark by the following examples.

Example 4.8: Let X = Y = {a,b,c} with topologies τ = {X, {a,b,c}, {a,c}, {a}} and τ = {Y, {a,b,c}, {a,c}, {a}}. Let f: X → Y be a map defined by f(a) = a, f(b) = b, f(c) = c. Then f is irresolute but it is not rw-irresolute since F = {a} is rw-closed in (Y, τ) but F^−1(F) = {a} is not rw-closed in (X, τ).

Example 4.9: Let X = Y = {a,b,c} with topologies τ = {X, {a,b,c}, {a,c}, {a}} and τ = {Y, {a,b,c}, {a,c}, {a}}. Let f: X → Y be a map defined by f(a) = a, f(b) = b, f(c) = c. Then f is rw-irresolute but it is not irresolute since F = {a,c} is semi-closed in (Y, σ) where F^−1(F) = {a,c} is not semi-closed in (X, τ).

REFERENCES

[16] Mashhour.A.S., Ab

ISSN: 2231-5373 http://www.internationaljournalssrg.org