A New Closure and Interior Operators via V-Closed Sets and V-Open Sets

S. Saranya A, Dr. K. Bageerathi
Assistant professors of mathematics
Aditanar college of Arts and Science, Tiruchendur,
Tamil Nadu-628215, INDIA.

Abstract
The purpose of this paper is to introduce the some operators via v-open sets and v-closed sets in topological spaces and obtain some of interesting properties of these operators.

AMS Subject Classification (2010): 54A05

Keywords: v-open, v-closed, v-interior, v-closure.

1. INTRODUCTION

2. PRELIMINARIES
Throughout this paper, spaces (X, τ) (or simply X) always mean non empty topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset A of a space (X, τ), $cl(A), int(A), cl^*(A), int^*(A)$ and X/A denote the closure of A, the interior of A, g-closure of A, g-interior of A and the complement of A respectively. The following definitions and results are very useful in the subsequent sections

Definition 2.1. A subset A of a topological space (X, τ) is said to be a v-open set if $A \subseteq int^*(cl(A)) \cup cl^*(int(A))$.

3. v-INTERIOR OPERATOR

Definition 3.1. Let A be a subset of a topological space (X, τ). Then the union of all v-open sets contained in A is called the v-interior of A and it is denoted by $vint(A)$. That is, $vint(A) = \{V: V \subseteq A \text{ and } V \in v - O(X)\}$.

Remark 3.2. Since the union of v-open subsets of X is v-open in X, then $vint(A)$ is v-open in X.

Definition 3.3. Let A be a subset of a topological space X. A point $x \in X$ is called a v-interior point of A if there exists a v-open set G such that $x \in G \subseteq A$.

Theorem 3.4. Let A be a subset of a topological space (X, τ). Then

(i) $vint(A)$ is the largest v-open set contained in A.
(ii) A is v-open if and only if $vint(A)=A$.
(iii) $vint(A)$ is the set of all v-interior points of A.
(iv) A is v-open if and only if every point of A is a v-interior point of A.

Proof:
(i) Being the union of all \(v \)-open sets, \(\text{vint}(A) \) is \(v \)-open and contains every \(v \)-open subset of \(A \). Hence \(\text{vint}(A) \) is the largest \(v \)-open set contained in \(A \).

(ii) Necessity: Suppose \(A \) is \(v \)-open. Then by Definition 3.1, \(A \subseteq \text{vint}(A) \). But \(\text{vint}(A) \subseteq A \) and therefore, \(\text{vint}(A) = A \). Sufficiency: suppose \(\text{vint}(A) = A \). Then by Remark 3.2, \(\text{vint}(A) \) is \(v \)-open set. Hence \(A \) is \(v \)-open.

(iii) Let \(x \in \text{vint}(A) \) \(\iff \) \(x \in \bigcup \{ V \cdot V \subseteq A \text{ and } V \in v - O(X) \} \)

\[\iff \text{there exists a } v \text{-open set } G \text{ such that } x \in G \subseteq A. \]

\[\iff A \text{ is a } v \text{-nbhd of } x. \]

\[\iff x \text{ is a } v \text{-interior point of } A. \]

Hence \(\text{vint}(A) \) is the set of all \(v \)-interior points of \(A \).

(iv) Suppose \(A \) is \(v \)-open. Then by part (ii) and (iii), we have every point of \(A \) is the \(v \)-interior point of \(A \).

Theorem 3.5. Let \(A \) and \(B \) be subsets of \((X, \tau)\). Then the following results hold.

(i) \(\text{vint}(\phi) = \phi \) and \(\text{vint}(X) = X \).

(ii) If \(B \) is any \(v \)-open set contained in \(A \), then \(B \subseteq \text{vint}(A) \).

(iii) If \(A \subseteq B \), then \(\text{vint}(A) \subseteq \text{vint}(B) \).

(iv) \(\text{int}(A) \subseteq \text{s'\text{int}}(A) \subseteq \text{vint}(A) \subseteq A \).

(v) \(\text{vint}(\text{vint}(A)) = \text{vint}(A) \).

Proof:

(i) Since \(\phi \) is the only \(v \)-open set contained in \(\phi \), then \(v\text{cl}(\phi) = \phi \). Since \(X \) is \(v \)-open and \(\text{vint}(X) \) is the union of all \(v \)-open sets contained in \(X \), \(\text{vint}(X) = X \).

(ii) Suppose \(B \) is \(v \)-open set contained in \(A \). Since \(\text{vint}(A) \) is the union of all \(v \)-open set contained in \(A \), then we have \(B \subseteq \text{vint}(A) \).

(iii) Suppose \(A \subseteq B \). Let \(x \in \text{vint}(A) \). Then \(x \) is a \(v \)-interior point of \(A \) and hence there exists a \(v \)-open set \(G \) such that \(x \in G \subseteq A \). Since \(A \subseteq B \), then \(x \in G \subseteq B \). Therefore \(x \) is a \(v \)-interior point of \(A \). Hence \(x \in \text{vint}(B) \). This proves (iii).

(iv) Since \(\text{semi}^* \text{-open set is } v \)-open, \(\text{s'\text{int}}(A) \subseteq \text{vint}(A) \). Every open set is semi* open, \(\text{int}(A) \subseteq \text{s'\text{int}}(A) \). Therefore \(\text{int}(A) \subseteq \text{s'\text{int}}(A) \subseteq \text{vint}(A) \subseteq A \). This proves (iv).

(v) By Remark 3.2, \(\text{vint}(A) \) is \(v \)-open and by Theorem 3.4, \(\text{vint}(\text{vint}(A)) = \text{vint}(A) \). This proves (v).

Theorem 3.6. Let \(A \) and \(B \) are the subsets of a topological space \(X \). Then,

(i) \(\text{vint}(A) \cup \text{vint}(B) \subseteq \text{vint}(A \cup B) \).

(ii) \(\text{vint}(A \cap B) \subseteq \text{vint}(A) \cap \text{vint}(B) \).

Proof:

(i) Let \(A \) and \(B \) be subsets of \(X \). We have \(A \subseteq A \cup B \) and \(B \subseteq A \cup B \). By Theorem 3.5(iii), \(\text{vint}(A) \subseteq \text{vint}(A \cup B) \) and \(\text{vint}(B) \subseteq \text{vint}(A \cup B) \) which implies that, \(\text{vint}(A) \cup \text{vint}(B) \subseteq \text{vint}(A \cup B) \). This proves (i).

(ii) We have \(A \cap B \subseteq A \) and \(A \cap B \subseteq B \). Then by Theorem 3.5(iii), \(\text{vint}(A \cap B) \subseteq \text{vint}(A) \) and \(\text{vint}(A \cap B) \subseteq \text{vint}(B) \) which implies, \(\text{vint}(A \cap B) \subseteq \text{vint}(A) \cap \text{vint}(B) \). This proves (ii).

Theorem 3.7. For any subset \(A \) of \(X \),

(i) \(\text{int}(\text{vint}(A)) = \text{int}(A) \)

(ii) \(\text{vint}(\text{int}(A)) = \text{int}(A) \).
Proof (i) Since \(\text{vint}(A) \subseteq A \), then \(\text{int}(\text{vint}(A)) \subseteq \text{int}(A) \). By Theorem 3.5(iv), \(\text{int}(A) \subseteq (\text{vint}(A)) \), we have \(\text{int}(A) = \text{int}(\text{int}(A)) \subseteq \text{int}(\text{vint}(A)) \). Hence \(\text{int}(\text{vint}(A)) = \text{int}(A) \).

(ii) Since \(\text{int}(A) \) is open and hence \(v \)-open, by Theorem 3.3, \(\text{vint}(\text{int}(A)) = \text{int}(A) \).

4. \(v \)-CLOSURE OPERATOR

Definition 4.1. Let \(A \) be a subset of a topological space \((X, \tau) \). Then the intersection of all \(v \)-closed sets in \(X \) containing \(A \) is called the \(v \)-closure of \(A \) and it is denoted by \(\text{vcl}(A) \). That is, \(\text{vcl}(A) = \text{int} \{ F : A \subseteq F \text{ and } F \in v - C(X) \} \).

Remark 4.2. Since the intersection of \(v \)-closed set is \(v \)-closed, then \(\text{vcl}(A) \) is \(v \)-closed.

Theorem 4.3. Let \(A \) be a subset of a topological space \((X, \tau) \). Then

(i) \(\text{vcl}(A) \) is the smallest \(v \)-closed set containing \(A \).

(ii) \(A \) is \(v \)-closed if and only if \(\text{vcl}(A) = A \).

Proof:

(i) Being the intersection of all \(v \)-closed sets, \(\text{vcl}(A) \) is \(v \)-closed and contained in every \(v \)-closed set containing \(A \). Hence \(\text{vcl}(A) \) is the smallest \(v \)-closed set containing \(A \).

(ii) Necessity: Suppose \(A \) is \(v \)-closed. Then by Definition 4.1, \(\text{vcl}(A) \subseteq A \). But \(A \subseteq \text{vcl}(A) \) and therefore \(\text{vcl}(A) = A \). Sufficiency: Suppose \(\text{vcl}(A) = A \). Then by Remark, \(\text{vcl}(A) \) is \(v \)-closed set. Hence \(A \) is \(v \)-closed.

Theorem 4.4. Let \(A \) and \(B \) be a two subsets of a topological space \((X, \tau) \). Then the following results hold.

(i) \(\text{vcl}(\phi) = \phi \) and \(\text{vcl}(X) = X \).

(ii) If \(B \) is any \(v \)-closed set containing \(A \), then \(\text{vcl}(A) \subseteq B \).

(iii) If \(A \subseteq B \), then \(\text{vcl}(A) \subseteq \text{vcl}(B) \).

(iv) \(A \subseteq \text{vcl}(A) \subseteq \text{sc}(A) \subseteq \text{cl}(A) \).

(v) \(\text{vcl}((\text{vcl}(A))) = \text{vcl}(A) \).

Proof:

(i) Since \(\phi \) is \(v \)-closed and \(\text{vcl}(\phi) \) is the intersection of all \(v \)-closed sets containing \(\phi \), \(\text{vcl}(\phi) = \phi \). since \(X \) is the only \(v \)-closed set containing \(X \), then \(\text{vcl}(X) = X \).

(ii) Suppose \(B \) is \(v \)-closed set containing \(A \). Since \(\text{vcl}(A) \) is the intersection of all \(v \)-closed set containing \(A \), then we have \(\text{vcl}(A) \subseteq B \).

(iii) Suppose \(A \subseteq B \). Let \(F \) be any \(v \)-closed set containing \(B \). Since \(A \subseteq B \), then \(A \subseteq F \) and hence by part (ii), \(\text{vcl}(A) \subseteq F \). Therefore \(\text{vcl}(A) \subseteq \{ F / B \subseteq F \text{ and } F \text{ is } v \text{-closed} \} = \text{vcl}(B) \). This proves (iii).

(iv) Since \(\text{semi}^{*} \)-closed set is \(v \)-closed, \(\text{vcl}(A) \subseteq \text{semi}^{*}\text{cl}(A) \) and every closed set is \(v \)-closed, \(\text{vcl}(A) \subseteq \text{cl}(A) \). Therefore \(A \subseteq \text{vcl}(A) \subseteq \text{semi}^{*}\text{cl}(A) \subseteq \text{cl}(A) \). This proves (iv).

(v) By Remark 4.2, \(\text{vcl}(A) \) is \(v \)-closed and by Theorem 4.3, \(\text{vcl}((\text{vcl}(A))) = \text{vcl}(A) \). This proves (v).

Theorem 4.5. Let \(A \) and \(B \) be subsets of a topological space \((X, \tau) \). Then,

(i) \(\text{vcl}(A) \cup \text{vcl}(B) \subseteq \text{vcl}(A \cup B) \).

(ii) \(\text{vcl}(A \cap B) \subseteq \text{vcl}(A) \cap \text{vcl}(B) \).

Proof: (i) Let \(A \) and \(B \) be subsets of \(X \). We have \(A \subseteq A \cup B \) and \(B \subseteq A \cup B \). By Theorem 4.4 (iii), \(\text{vcl}(A) \subseteq \text{vcl}(A \cup B) \) and \(\text{vcl}(B) \subseteq \text{vcl}(A \cup B) \) which implies that, \(\text{vcl}(A) \cup \text{vcl}(B) \subseteq \text{vcl}(A \cup B) \). This proves (i). (ii) We have \(A \cap B \subseteq A \) and \(A \cap B \subseteq B \). Then by Theorem 4.4 (iii), \(\text{vcl}(A \cap B) \subseteq \text{vcl}(A) \) and \(\text{vcl}(A \cap B) \subseteq \text{vcl}(B) \) which implies, \(\text{vcl}(A \cap B) \subseteq \text{vcl}(A) \cap \text{vcl}(B) \). This proves (ii).
Theorem 4.6. For a subset A of X and $x \in X$, $x \in vcl(A)$ if and only if $V \cap A \neq \phi$ for every v-open set V containing x.

Proof: Necessity: Let $x \in vcl(A)$. Suppose there is a v-open set V containing x such that $V \cap A = \phi$. Then $A \subseteq X \setminus V$ and $X \setminus V$ is v-closed and hence $vcl(A) \subseteq X \setminus V$. Since $x \in vcl(A)$, then $x \in X \setminus V$ which contradicts to $x \in V$.

Sufficiency: Assume that $V \cap A \neq \phi$ for every v-open set V containing x. Suppose $x \notin vcl(A)$. Then there exists a v-closed set F such that $A \subseteq F$ and $x \notin F$. Therefore $x \in X \setminus F$, $A \cap (X \setminus F) = \phi$ and $X \setminus F$ is v-open. This is a contradiction to our assumption. Hence $x \in vcl(A)$.

Theorem 4.7. For any subset A of X,

(i) $cl(vcl(A)) = cl(A)$
(ii) $vcl(cl(A)) = cl(A)$.

Proof: (i) Since $A \subseteq vcl(A)$, then $cl(A) \subseteq cl(vcl(A))$. By Theorem 4.4(iv), $vcl(A) \subseteq cl(A)$, we have $cl(vcl(A)) \subseteq cl(cl(A))$ = $cl(A)$. Hence $cl(vcl(A)) = cl(A)$. (ii) Since $cl(A)$ is closed and hence v-closed, by Theorem 4.3, $vcl(cl(A)) = cl(A)$.

REFERENCES