4-Difference Cordial Labeling of Cycle and Wheel Related Graphs

S. M. Vaghasiya¹, G. V. Ghodasara²

¹ Research Scholar, R. K. University, Rajkot—360020, India.
² H. & H. B. Kotak Institute of Science, Rajkot—360001, India.

Abstract — Let G be a (p, q) graph. Let k be an integer with $2 \leq k \leq p$ and $f : V(G) \to \{1, 2, \ldots, k\}$ be a map. For each edge uv, assign the label $|f(u) - f(v)|$. The function f is called a k-difference cordial labeling of G if $|v_f(0) - v_f(1)| \leq 1$ and $|e_f(0) - e_f(1)| \leq 1$ where $v_f(x)$ denotes the number of vertices labelled with x ($x \in \{1, 2, \ldots, k\}$), $e_f(1)$ and $e_f(0)$ respectively denote the number of edges labelled with 1 and not labelled with 1. A graph with a k-difference cordial labeling is called a k-difference cordial graph. In this paper we discuss 4-difference cordial labeling for cycle, wheel, crown, helm and gear graph.

Key words : Difference cordial labeling, 4-difference cordial labeling.
Subject classification number: 05C78.

I. INTRODUCTION

We consider simple, finite, undirected graph $G = (V, E)$. R. Ponraj, M. Maria Adaickalam and R. Kala [6] introduced k-difference cordial labeling of graphs. In [6], they investigated k-difference cordial labeling behavior of star, m copies of star and proved that every graph is a subgraph of a connected k-difference cordial graph. In [7], R. Ponraj and M. Maria Adaickalam discussed the 3-difference cordial labeling behavior of path, cycle, star, bistar, complete graph, complete bipartite graph, comb, double comb, quadrilateral snake. For the standard terminology and notations we follow Harary[1].

II. MAIN RESULTS

In this paper we have proved that cycle, wheel, helm, crown and gear graph are 4-difference cordial graphs.

Definition II.1. A cycle $C_n (n \in \mathbb{N}, n \geq 3)$ is closed path with n vertices.

Theorem II.1. Cycle C_n is a 4-difference cordial graph.

Proof. Let $V(C_n) = \{v_1, v_2, \ldots, v_n\}$. We define labeling function $f : V(C_n) \to \{1, 2, 3, 4\}$ as follows.

Case 1: n is odd.

$$f(v_{4i+1}) = 1; 0 \leq i \leq \left\lfloor \frac{n-1}{4} \right\rfloor.$$
$$f(v_{4i+2}) = 2; 0 \leq i \leq \left\lfloor \frac{n-3}{4} \right\rfloor.$$
$$f(v_{4i+3}) = 3; 1 \leq i \leq \left\lfloor \frac{n-1}{4} \right\rfloor.$$
$$f(v_{4i+4}) = 4; 0 \leq i \leq \left\lfloor \frac{n-3}{4} \right\rfloor.$$

Case 2: n is even.

Subcase 1: $n \equiv 0(mod4)$.

$$f(v_{4i}) = 1; 1 \leq i \leq \frac{n}{4}.$$
$$f(v_{4i+1}) = 2; 0 \leq i \leq \frac{n-4}{4}.$$
$$f(v_{4i+2}) = 3; 0 \leq i \leq \frac{n-4}{4}.$$
$$f(v_{4i+3}) = 4; 0 \leq i \leq \frac{n-4}{4}.$$
Subcase 2: \(n \equiv 2(\text{mod} 4) \).

\[
\begin{align*}
 f(v_1) &= 2, \\
 f(v_2) &= 1, \\
 f(v_{4i+1}) &= 1; \ 1 \leq i \leq \left\lfloor \frac{n-2}{4} \right\rfloor. \\
 f(v_{4i+2}) &= 2; \ 1 \leq i \leq \left\lfloor \frac{n-2}{4} \right\rfloor. \\
 f(v_{4i}) &= 3; \ 1 \leq i \leq \left\lfloor \frac{n-2}{4} \right\rfloor. \\
 f(v_{4i+3}) &= 4; \ 0 \leq i \leq \left\lfloor \frac{n-6}{4} \right\rfloor.
\end{align*}
\]

In each case cycle \(C_n \) satisfies the conditions for 4-difference cordial labeling. Hence \(C_n \) is a 4-difference cordial graph.

Example 1. The 4-difference cordial labeling of \(C_{18} \) is shown in Figure 1.

![Fig. 1](image1.png)

Definition II.2. The wheel \(W_n (n \in \mathbb{N}, n \geq 3) \) is a join of the graphs \(C_n \) and \(K_1 \), i.e. \(W_n = C_n + K_1 \). Here vertices corresponding to \(C_n \) are called rim vertices and \(C_n \) is called rim of \(W_n \). The vertex corresponding to \(K_1 \) is called apex vertex.

Theorem II.2. \(W_n \) is a 4-difference cordial graph.

Proof. Let \(v_0 \) be the apex vertex and \(v_1, v_2, \ldots, v_n \) be the rim vertices of \(W_n \). We define labeling function \(f : V(W_n) \to \{1, 2, 3, 4\} \) as follows.

Case 1: \(n \) is odd.

\[
\begin{align*}
 f(v_{4i+1}) &= 1; \ 1 \leq i \leq \left\lfloor \frac{n-1}{4} \right\rfloor. \\
 f(v_{4i+2}) &= 2; \ 0 \leq i \leq \left\lfloor \frac{n-1}{4} \right\rfloor. \\
 f(v_{4i}) &= 3; \ 0 \leq i \leq \left\lfloor \frac{n-3}{4} \right\rfloor. \\
 f(v_{4i+3}) &= 4; \ 0 \leq i \leq \left\lfloor \frac{n-3}{4} \right\rfloor.
\end{align*}
\]

Case 2: \(n \) is even.

\[
\begin{align*}
 f(v_1) &= 2, \\
 f(v_2) &= 3, \\
 f(v_3) &= 4. \\
 f(v_{4i+3}) &= 1; \ 1 \leq i \leq \left\lfloor \frac{n-3}{4} \right\rfloor. \\
 f(v_{4i}) &= 2; \ 1 \leq i \leq \left\lfloor \frac{n}{4} \right\rfloor. \\
 f(v_{4i+1}) &= 3; \ 1 \leq i \leq \left\lfloor \frac{n-2}{4} \right\rfloor. \\
 f(v_{4i+2}) &= 4; \ 1 \leq i \leq \left\lfloor \frac{n-2}{4} \right\rfloor.
\end{align*}
\]

In each case wheel graph \(W_n \) satisfies the conditions of 4-difference cordial labeling. Hence \(W_n \) is 4-difference cordial graph.

Example 2. 4-difference cordial labeling of \(W_{11} \) is shown in Figure 2.

![Fig. 2](image2.png)
Definition II.3. The crown \(C_n \odot K_1(n \in \mathbb{N}, n \geq 3) \) is obtained by joining a pendant edge to each vertex of \(C_n \).

Theorem II.3. Crown \(C_n \odot K_1 \) is a 4-difference cordial graph.

Proof. Let \(V(C_n \odot K_1) = \{v_1, v_2, \ldots, v_n, v'_1, v'_2, \ldots, v'_n\} \), where \(v_1, v_2, \ldots, v_n \) are rim vertices and \(v'_1, v'_2, \ldots, v'_n \) are pendant vertices.

We define labeling function \(f : V(C_n \odot K_1) \rightarrow \{1, 2, 3, 4\} \) as follows.

Case 1: \(n \) is odd.

\[f(v_{2i+1}) = 1; \quad 0 \leq i \leq \frac{n-1}{2}. \]
\[f(v_{2i}) = 3; \quad 1 \leq i \leq \frac{n-1}{2}. \]
\[f(v'_{2i+1}) = 2; \quad 0 \leq i \leq \frac{n-2}{2}. \]
\[f(v'_{2i}) = 4; \quad 1 \leq i \leq \frac{n-2}{2}. \]

Case 2: \(n \) is even.

\[f(v_{2i+1}) = 1; \quad 0 \leq i \leq \frac{n-2}{2}. \]
\[f(v_{2i}) = 3; \quad 1 \leq i \leq \frac{n}{2}. \]
\[f(v'_{2i+1}) = 2; \quad 0 \leq i \leq \frac{n-2}{2}. \]
\[f(v'_{2i}) = 4; \quad 1 \leq i \leq \frac{n}{2}. \]

In each case the crown graph \(C_n \odot K_1 \) satisfies the conditions of 4-difference cordial labeling. Hence it is 4-difference cordial graph. \(\square \)

Example 3. 4-difference cordial labeling of crown \(C_9 \odot K_1 \) is shown in Figure 3.

Definition II.4. A helm \(H_n(n \geq 3) \) is the graph obtained from the wheel \(W_n \) by adding a pendant edge at each vertex on the rim of \(W_n \).

Theorem II.4. \(H_n \) is a 4-difference cordial graph.

Proof. Let \(V(H_n) = \{v_0, v_1, \ldots, v_n, v'_1, v'_2, \ldots, v'_n\} \), where \(v_0 \) is apex vertex, \(\{v_1, v_2, \ldots, v_n\} \) are rim vertices and \(\{v'_1, v'_2, \ldots, v'_n\} \) are pendant vertices.

We define labeling function \(f : V(H_n) \rightarrow \{1, 2, 3, 4\} \) as follows.

Case 1: \(n \) is odd.

\[f(v_{4i}) = 1; \quad 1 \leq i \leq \left\lfloor \frac{n-1}{2} \right\rfloor. \]
\[f(v_{4i+1}) = 2; \quad 0 \leq i \leq \left\lfloor \frac{n-1}{2} \right\rfloor. \]
\[f(v_{4i+2}) = 3; \quad 0 \leq i \leq \left\lfloor \frac{n-3}{4} \right\rfloor. \]
\[f(v_{4i+3}) = 4; \quad 0 \leq i \leq \left\lfloor \frac{n-3}{4} \right\rfloor. \]
\[f(v'_{4i+1}) = 1; \quad 0 \leq i \leq \left\lfloor \frac{n-3}{4} \right\rfloor. \]
\[f(v'_{4i+2}) = 2; \quad 0 \leq i \leq \left\lfloor \frac{n-3}{4} \right\rfloor. \]
\[f(v'_{4i+3}) = 3; \quad 0 \leq i \leq \left\lfloor \frac{n-1}{4} \right\rfloor. \]
\[f(v'_{4i}) = 4; \quad 1 \leq i \leq \left\lfloor \frac{n-1}{4} \right\rfloor. \]
Case 2: \(n \) is even.

\[
\begin{align*}
f(v_{2i+1}) &= 2; \quad 0 \leq i \leq \frac{n-2}{2}. \\
f(v_{2i}) &= 4; \quad 1 \leq i \leq \frac{n}{2}. \\
f(v'_{2i+1}) &= 1; \quad 0 \leq i \leq \frac{n-2}{2}. \\
f(v'_{2i}) &= 3; \quad 1 \leq i \leq \frac{n}{2}.
\end{align*}
\]

In each case the helm graph \(H_n \) satisfies the conditions of 4-difference cordial labeling. Hence \(H_n \) is 4-difference cordial graph.

Example 4. 4-difference cordial labeling of helm \(H_9 \) is shown in Figure 4.

![Fig. 4](image)

Definition II.5. A gear graph \(G_n \) \((n \geq 3)\) is obtained from the wheel \(W_n \) by adding a vertex between every pair of adjacent vertices of rim of \(W_n \).

Theorem II.5. Gear \(G_n \) is a 4-difference cordial graph.

Proof. Let \(G_n = \{v_0, v_1, \ldots, v_{2n}\}\), where \(v_0 \) is apex vertex, \(\{v_1, v_3, \ldots, v_{2n-1}\} \) are the vertices of degree 3 and \(\{v_2, v_4, \ldots, v_{2n}\} \) are the vertices of degree 2.

We define labeling function \(f : V(G_n) \rightarrow \{1, 2, 3, 4\} \) as follows.

Case 1: \(n \) is odd.

\[
\begin{align*}
v_0 &= 3. \\
f(v_{4i+1}) &= 1; \quad 0 \leq i \leq \frac{n-1}{2} - 1. \\
f(v_{4i+2}) &= 2; \quad 0 \leq i \leq \frac{n}{2} - 1. \\
f(v_{4i+3}) &= 3; \quad 0 \leq i \leq \frac{n-3}{2} - 1. \\
f(v_{4i+4}) &= 4; \quad 0 \leq i \leq \frac{n-3}{2} - 1.
\end{align*}
\]

Case 2: \(n \) is even.

\[
\begin{align*}
v_0 &= 1. \\
f(v_{4i+1}) &= 1; \quad 0 \leq i \leq \frac{n}{2} - 1. \\
f(v_{4i+2}) &= 2; \quad 0 \leq i \leq \frac{n}{2} - 1. \\
f(v_{4i+3}) &= 3; \quad 0 \leq i \leq \frac{n}{2} - 1. \\
f(v_{4i+4}) &= 4; \quad 0 \leq i \leq \frac{n}{2} - 1.
\end{align*}
\]

In each case the gear graph \(G_n \) satisfies the conditions of 4-difference cordial labeling. Hence \(G_n \) is 4-difference cordial graph.

Example 5. 4-difference cordial labeling of \(G_5 \) is shown in Figure 5.

![Fig. 5](image)
REFERENCES

