On $S_{\frac{1}{2}} \mod I$ spaces and θ^I closed sets

Navpreet Singh Noorie¹; Nitakshi Goyal²
¹,² Department of Mathematics, Punjabi University, Patiala, 147002, INDIA

December 18, 2017

Abstract

In this paper we will introduce $S_{\frac{1}{2}} \mod I$ spaces and discuss their properties. We also introduce θ^I closed sets using the local closure function and obtain the sufficient conditions for a set to be θ^I closed.

2010 Mathematics Subject Classification: 54A05, 54A20, 54D10, 54D30.
Keywords. $S_{\frac{1}{2}} \mod I$, I-QHC, θ^I closed, ideal.

1 Introduction and Preliminaries

The subject of ideals in topological spaces has been studied by Kuratowski³ and Vaidyanathaswamy⁵. An ideal I on a topological space (X, τ) is a collection of subsets of X which satisfies that (i) $A \in I$ and $B \in I$ implies $A \cup B \in I$ and (ii) $A \in I$ and $B \subseteq A$ implies $B \in I$. Given a topological space (X, τ) with an ideal I on X known as ideal topological space and $(\cdot)^*: \wp(X) \rightarrow \wp(X)$, called a local function³ of A with respect to I and τ, is defined as follows: for $A \subseteq X$, $A^*(I, \tau) = \{x \in X : U \cap A \notin I \text{ for every open nhd. } U \text{ of } x \text{ in } X\}$. A Kuratowski closure operator $cl^*(\cdot)$ for a topology $\tau^*(I, \tau)$, called the *-topology, finer than τ, is defined by $cl^*(A) = A \cup A^*(I, \tau)$⁴. A topological (X, τ) is said to be $S_{\frac{1}{2}}$ if for any two distinct points x, y of X, whenever one of them has open set not containing the other then there exist open sets U and V such that $x \in U, y \in V$ and $\overline{U} \cap \overline{V} = \emptyset$. When there is no chance of confusion, we will simply write A^* for $A^*(I, \tau)$ and $\tau^*(I, \tau)$ for $\tau^*(I, \tau)$.

Throughout this paper (X, τ) will denote topological space on which no separation axioms are assumed. If I is an ideal on X, then (X, τ, I) is called an ideal space. For a subset A of X, $cl(A)$ and $int(A)$ will denote the closure of A, interior of A in (X, τ), respectively, $cl^*(A)$ and $int^*(A)$ will denote the closure of A, interior of A in (X, τ^*), respectively, and A^C will denote the complement of A in X.

Lemma 1.1. [x] Let (X, τ, I) be an ideal space. Then for any subset A of X the following holds:

(a) $A^* \subset \Gamma(A)(I, \tau) \subset cl^*(A)$.
(b) $\Gamma(A)(I, \tau) = cl(\Gamma(A)(I, \tau))$.

2 Results

We begin by defining $S_{\frac{1}{2}} \mod I$ spaces.

Definition 2.1. An ideal space (X, τ, I) is said to be $S_{\frac{1}{2}} \mod I$ if for any two distinct points x, y of X, whenever one of them has open set not containing the other then there exist open sets U and V such that $x \in U, y \in V$ and $\overline{U} \cap \overline{V} \in I$.

Corresponding author and Supervisor
ISSN: 2231-5373 http://www.ijmttjournal.org
Since $\emptyset \in \mathcal{I}$, therefore, $S_{2 \frac{1}{2}}$ space is $S_{2 \frac{1}{2}} \mod \mathcal{I}$, but the following Example 2.1 shows that the converse need not be true.

Example 2.1. Let $X = \{x, y, z\}$, $\tau = \{\emptyset, \{x\}, \{y, z\}, \{x, y, z\}\}$, $\mathcal{I} = \{\emptyset, \{y\}, \{y, z\}\}$. Then X is $S_{2 \frac{1}{2}}$ mod \mathcal{I} but not $S_{2 \frac{1}{2}}$.

Theorem 2.1. If an ideal space (X, τ, \mathcal{I}) is $S_{2 \frac{1}{2}}$ mod \mathcal{I} and $\mathcal{I} \subset \mathcal{J}$ then (X, τ, \mathcal{J}) is $S_{2 \frac{1}{2}}$ mod \mathcal{J}.

Proof. Proof is obvious and hence is omitted. \Box

The following Example 2.2 shows that if (X, τ^*) is $S_{2 \frac{1}{2}}$, then X need not be $S_{2 \frac{1}{2}}$ mod \mathcal{I}.

Example 2.2. Let $X = \{x, y, z\}$, $\tau = \{\emptyset, \{y\}, \{y, z\}, \{x, y, z\}\}$, $\mathcal{I} = \{\emptyset, \{y\}, \{y, z\}\}$. So $\tau^* = \varphi(X)$ and hence (X, τ^*) is obviously $S_{2 \frac{1}{2}}$, but X is not $S_{2 \frac{1}{2}}$ mod \mathcal{I}. Since \emptyset has an open set not containing $\{y\}$, but $\{y\} \cap \emptyset = \emptyset$.

Even though we have seen that if (X, τ^*) is $S_{2 \frac{1}{2}}$, then X need not be $S_{2 \frac{1}{2}}$ mod \mathcal{I}, but the following Theorem 2.2 shows that for codense ideals (X, τ^*) is $S_{2 \frac{1}{2}}$ implies X is $S_{2 \frac{1}{2}}$ mod \mathcal{I}.

Theorem 2.2. Let (X, τ, \mathcal{I}) be an ideal space where \mathcal{I} is codense and (X, τ^*) is $S_{2 \frac{1}{2}}$ then X is $S_{2 \frac{1}{2}}$ mod \mathcal{I}.

Proof. Let $x, y \in X$ be any two distinct points such that one of them has τ-open and hence τ^*-open subset not containing the other. Then (X, τ^*) is $S_{2 \frac{1}{2}}$ implies there exist basic open set $G - I, H - J$ where G, H are open in x and $I, J \in \mathcal{I}$ such that $x \notin G - I, y \notin H - J$ and $cl^I(G - I) \cap cl^J(H - J) = \emptyset$ and so by $cl^I(G - I) \cap cl^J(H - J) = \emptyset$. This implies that $cl^I(G) \cap cl^J(H) = \emptyset$. Therefore, $(cl^I(G) \cap cl^J(H)) \cap (I \cup J) = \emptyset$. Now \mathcal{I} is codense implies that $cl^I(G) = cl^J(G)$ for every open subset G of X. Hence $cl^I(G) \cap cl^J(H)$ implies that X is $S_{2 \frac{1}{2}}$ mod \mathcal{I}. \Box

Definition 2.2. An ideal space (X, τ, \mathcal{I}) is said to be $S_{2 \frac{1}{2}}$ mod \mathcal{I} if for any two distinct points x, y of X, whenever one of them has τ-open set not containing the other then exist open sets U and V such that $x \in U$, $y \in V$ and $\overline{U} \cap \overline{V} \in \mathcal{I}$.

It can be seen easily that (X, τ, \mathcal{I}) is $S_{2 \frac{1}{2}}$ mod \mathcal{I} implies $S_{2 \frac{1}{2}}$ mod \mathcal{I} but the following Example 2.3 shows that the converse is not true.

Example 2.3. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X\}$, $\mathcal{I} = \{\emptyset, \{a\}\}$. So $\tau^* = \varphi(X)$ and hence (X, τ, \mathcal{I}) is obviously $S_{2 \frac{1}{2}}$ mod \mathcal{I}, but $\{a\}$ has a τ-open set not containing $\{a\}$ and X is the only open subset containing $\{a\}$ and \emptyset implies that (X, τ, \mathcal{I}) is not $S_{2 \frac{1}{2}}$ mod \mathcal{I}.

In [2], Gupta and Noiri introduced QHC spaces with respect to an ideal written I-QHC(An Ideal space (X, τ, \mathcal{I}) is said to be I-QHC if for every open cover $\{G_\alpha : \alpha \in \Delta\}$ of X, there exists a finite subset Δ_0 of Δ such that $X - \bigcup\{cl(G_\alpha) : \alpha \in \Delta_0\} \in \mathcal{I}$). We now discussed some properties of I-QHC spaces.

Theorem 2.3. Let (X, τ, \mathcal{I}) be $S_{2 \frac{1}{2}}$ mod \mathcal{I} space and F be I-QHC subset of X such that $x \notin \overline{F}$ then there exist open subsets U and V such that $x \in U$, $\overline{U} \notin \mathcal{I}$ and $x \notin \overline{V} \notin \mathcal{I}$.

Proof. Let F be any I-QHC subset of X and $x \in X$ be any element such that $x \notin \overline{F}$ then $x \in X - \overline{F}$. Therefore, for all $y \in F$, x has an open set $x \notin \overline{F}$ not containing the elements of F and so X is $S_{2 \frac{1}{2}}$ mod \mathcal{I} implies that there exist open subsets U, V containing x, y respectively such that $\overline{U} \cap \overline{V} \in \mathcal{I}$ and $\overline{U} \notin \mathcal{I}$ and $\overline{V} \notin \mathcal{I}$. Further, F is I-QHC subset of X implies that there exist finite subset F_0 of F such that $F \setminus \bigcup_{y \in F_0} \overline{V_0} \in \mathcal{I}$ and so $F \setminus \bigcup_{y \in F_0} \overline{V_0} \in \mathcal{I}$. Consider $U = \bigcup_{y \in F_0} U_y$ and $V = \bigcup_{y \in F_0} V_y$ then U is the open subset containing x and $\overline{U} \notin \mathcal{I}$ and $\overline{V} \notin \mathcal{I}$. \Box

Theorem 2.4. Let (X, τ, \mathcal{I}) be an ideal space and K be I-QHC subset of X then $cl^I(K)$ is also I-QHC.

Proof. Let G_α be open cover of $cl^I(K)$ so that $cl^I(K) \subseteq \bigcup_\alpha G_\alpha$ and so $K \subseteq cl^I(K) \subseteq \bigcup_\alpha G_\alpha$. But K is I-QHC subset of X implies that $K - \bigcup_{\alpha=1}^\beta G_\alpha \in \mathcal{I}$. Let $G = \bigcup_{\alpha=1}^\beta G_\alpha$, so that $K \setminus \overline{G} \in \mathcal{I}$. Now we will prove that $cl^I(K) \setminus \overline{G} \in \mathcal{I}$. For this we will prove that $cl^I(K) \setminus \overline{G} \subseteq K \setminus \overline{G}$.

Let $x \notin K \setminus \overline{G}$. Then there can be two possibilities: case(i) $x \notin K$ case(ii) $x \notin \overline{G}$. Now if $x \in \overline{G}$ then obviously $x \notin K$ and $x \notin \overline{G}$. Then $x \in (\overline{G})^C$. This implies that \overline{G} is open set containing x and $(\overline{G})^C \cap K \in \mathcal{I}$ implies that $x \notin K^*$. Hence, $x \notin K \cup K^*$ and so $x \notin \overline{K}$. Therefore, $x \notin cl^I(K) \setminus \overline{G}$. Hence $cl^I(K) \setminus \overline{G} \subseteq K \setminus \overline{G} \in \mathcal{I}$ and so $cl^I(K) \setminus \overline{G} \in \mathcal{I}$ implies that $cl^I(K)$ is I-QHC. \Box
In [1], Al-Omari and Noiri defined the local closure function in ideal topological spaces (where in an ideal topological space $(X, τ, I)$ for a subset A of X, the local closure function of A denoted by $Γ(A)(I, τ)$ is defined as $Γ(A)(I, τ) = \{x \in X : U \cap A \notin I \text{ for every } τ\text{-nhd. } U \text{ of } x \in X \}$). Before our further results firstly, we will define $θ^I$ closed sets using the local closure function.

Definition 2.3. Let $(X, τ, I)$ be an ideal space and A be any subset of X. Then A is said to be $θ^I$ closed if $Γ(A)(I, τ) ⊆ A$.

Theorem 2.5. Let $(X, τ, I)$ be *$S_{2\frac{1}{2}}$* mod I space and K be any I-QHC subset of X. Then K is $θ^I$ closed if and only if K or K^C is union of $τ^*$-closed subsets of X.

Proof. Firstly, let K is $θ^I$ closed and so $τ^*$-closed. This implies that K is union of $τ^*$-closed sets. Conversely, let $K = \bigcup_{a \in F_a}$, where F_a are $τ^*$-closed subsets of X. Then we will prove that $Γ(K)(I, τ) ⊆ K$. Let $x \in Γ(K)(I, τ)$ be any element then for every open subset G containing x, $G \cap K \notin I$. Consider the filter F generated by the filterbase $F(I) = \{G \cap A : G \text{ open subset of } X \text{ containing } x \}$. Then it can be easily seen that F is the filter containing the closure of every open subset containing x and $F \cap I = \emptyset$. Further, K is I-QHC subset of X implies that there exists $y \in K$ such that $y \in \bigcap_{F \in F(I)} Γ(F)(I, τ)$. Therefore, there exists $α$ such that $y \in F_a$. Now, let $x \notin K$, then $x \notin F_a$. So $x \in F_a^C$. This implies that F_a^C is $τ^*$-open nhd of x containing x but not y. Therefore, x is *$S_{2\frac{1}{2}}$* mod I implies that there exist open sets U and V of X containing x and y respectively such that $U \cap V \in I$ and so $y \notin Γ(U)(I, τ)$. Also U is open subset of X containing x implies that $U \in F$. Therefore, $y \in Γ(U)(I, τ)$ which means that $U \cap V \notin I$, which is a contradiction. Therefore, $x \in K$ and so $Γ(K)(I, τ) \subseteq K$. Hence K is $θ^I$ closed. □

The following Examples show that we can not replace *$S_{2\frac{1}{2}}$* mod I space by $S_{2\frac{1}{2}}$ mod I space or by $(X, τ^*)$ is $S_{2\frac{1}{2}}$.

Example 2.4. Let X be any infinite set with indiscrete topology and $I = I_f$ = ideal of finite subsets of X. Then $τ^* = \{G \subseteq X | X - G \text{ is finite} \}$ i.e. $τ^*$ is cofinite topology. Now, it can be easily seen that X is $S_{2\frac{1}{2}}$ mod I space since no point of X has a neighbourhood not containing the other. Further, X is the only open subset of X so every subset of X is I-QHC. Let K = any infinite subset of X so $K = \bigcup_{x \in K} \{x\}$ where each $x \in K$ is $τ^*$-closed i.e. K is union of $τ^*$-closed subsets of X. But K is not $θ^I$ closed. Since X is the only open subset of X and $X \cap K = K \cap K = K \notin I$. Therefore, $Γ(K)(I, τ) = X$ and so $Γ(K)(I, τ) \notin K$. Hence K is not $θ^I$ closed.

Example 2.5. Let $X = \{a, b, c\}$ with $τ = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ and $I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. So $τ^* = τ(I)(X)$. So it can be easily seen that $(X, τ^*)$ is $S_{2\frac{1}{2}}$ but X is not *$S_{2\frac{1}{2}}$* mod I. Since a has $τ^*$-open subset $\{a\}$ not containing b but $\overline{a} \cap \overline{b} = \{a, c\} \cap \{b, c\} = \{c\} \notin I$. Now, $\{c\}$ is $τ^*$-closed but $Γ(\{c\})(I, τ) = \{a, b, c\}$ and so $Γ(\{c\})(I, τ) \notin \{c\}$. Hence $\{c\}$ is not $θ^I$ closed.

Even though we cannot replace *$S_{2\frac{1}{2}}$* mod I space by $S_{2\frac{1}{2}}$ mod I space. But the following Theorem 2.6 holds.

Theorem 2.6. Let $(X, τ, I)$ be $S_{2\frac{1}{2}}$ mod I space and K be any I-QHC subset of X. Then K or K^C is union of closed subsets of X implies that K is $θ^I$ closed.

Proof. Proof is similar to Theorem 2.5 and hence is omitted. □

References

