Infinite integral involving the spheroidal function, a class of polynomials and multivariable Aleph-functions V

F.Y. AYANT

1 Teacher in High School, France

ABSTRACT

In the present paper we evaluate a infinite integral involving the product of the spheroidal function, multivariable Aleph-functions and general class of polynomials with general arguments. The importance of the result established in this paper lies in the fact they involve the Aleph-function of several variables which is sufficiently general in nature and capable to yielding a large of results merely by specializing the parameters their in.

Keywords: Multivariable Aleph-function, general class of polynomials, spheroidal function, multivariable I-function, Aleph-function of two variables, I-function of two variables.

2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1. Introduction and preliminaries.

The function Aleph of several variables generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [3], itself is an a generalisation of G and H-functions of multiple variables. The multiple Mellin-Barnes integral occurring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

We define:

\begin{equation}
\mathcal{N}(z_1, \ldots, z_r) = N^0_{n,m_1, \ldots, m_r, n_r} \left(\begin{array}{c}
z_1 \\
\vdots \\
\vdots \\
z_r \\
\end{array} \right)
\end{equation}

\begin{equation}
[(a_j^{(1)}, \alpha_j^{(1)}), \ldots, (a_j^{(r)}, \alpha_j^{(r)})]_{1,n} \\
[\tau_i(b_j^{(1)}, \beta_j^{(1)}), \ldots, (b_j^{(r)}, \beta_j^{(r)})]_{m+1,q_i} \\
\vdots \\
[\tau_i(b_j^{(1)}, \beta_j^{(1)}), \ldots, (b_j^{(r)}, \beta_j^{(r)})]_{m+1,q_i}
\end{equation}

where

\begin{equation}
\psi(s_1, \ldots, s_r) = \frac{1}{(2\pi \omega)^r} \int_{L_1} \ldots \int_{L_r} \prod_{k=1}^r \theta_k(s_k) y_k s_k^s \, ds_1 \ldots ds_r
\end{equation}

\begin{equation}
\psi(s_1, \ldots, s_r) = \prod_{j=1}^n \Gamma(1 - a_j + \sum_{k=1}^r \alpha_j^{(k)} s_k) \\
\sum_{i=1}^r \prod_{j=n+1}^{m_i} \Gamma(1 - a_j + \sum_{k=1}^r \alpha_j^{(k)} s_k) \prod_{j=1}^r \Gamma(1 - b_j + \sum_{k=1}^r \beta_j^{(k)} s_k)
\end{equation}

and

\begin{equation}
\theta_k(s_k) = \prod_{i=1}^{m_k} \Gamma(1 - d_j^{(k)} s_k + \sum_{j=1}^r \delta_j^{(k)} s_k) \\
\prod_{j=n+1}^{m_k} \Gamma(1 - d_j^{(k)} s_k + \sum_{j=1}^r \delta_j^{(k)} s_k)
\end{equation}

Suppose, as usual, that the parameters

ISSN: 2231-5373 http://www.ijmttjournal.org Page 48
with \(a, b, c, d \) complex numbers, and the \(\alpha', \beta', \gamma' \) are assumed to be positive real numbers for standardization purpose such that

\[
U_i^{(k)} = \sum_{j=1}^{n} \frac{\alpha_j^{(k)}}{\beta_j^{(k)}} + \tau_i \sum_{j=n+1}^{n_k} \frac{\alpha_j^{(k)}}{\beta_j^{(k)}} + \sum_{j=1}^{n_k} \frac{\gamma_j^{(k)}}{\gamma_j^{(k)}} + \tau_{i} \sum_{j=n_k+1}^{p_i} \frac{\gamma_j^{(k)}}{\gamma_j^{(k)}} - \tau_i \sum_{j=1}^{q_i} \frac{\beta_j^{(k)}}{\beta_j^{(k)}} - \sum_{j=1}^{m_k} \frac{\delta_j^{(k)}}{\gamma_j^{(k)}}
\]

\(\tau_i \) are positives for \(i = 1 \) to \(R \), \(\tau_{i} \) are positives for \(\tau^{(k)} = 1 \) to \(R^{(k)} \)

The reals numbers \(\tau_i \) are positives for \(i = 1 \) to \(R \), \(\tau_{i} \) are positives for \(\tau^{(k)} = 1 \) to \(R^{(k)} \)

The contour \(L_k \) is in the \(s_k \)-plane and run from \(\sigma - i \infty \) to \(\sigma + i \infty \) where \(\sigma \) is a real number with loop, if necessary, ensure that the poles of \(\Gamma(\alpha_j^{(k)} - \delta_j^{(k)} s_k) \) with \(j = 1 \) to \(n_k \) are separated from those of \(\Gamma(1 - a_j + \sum_{i=1}^{r} \alpha_j^{(k)} s_k) \) with \(j = 1 \) to \(n \) and \(\Gamma(1 - c_j^{(k)} + \gamma_j^{(k)} s_k) \) with \(j = 1 \) to \(n_k \) to the left of the contour \(L_k \). The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H-function given by as:

\[
|\arg z_k| < \frac{1}{2} A_i^{(k)} \pi, \quad \text{where}
\]

\[
A_i^{(k)} = \sum_{j=1}^{n} \frac{\alpha_j^{(k)}}{\beta_j^{(k)}} + \tau_i \sum_{j=n+1}^{n_k} \frac{\alpha_j^{(k)}}{\beta_j^{(k)}} + \sum_{j=1}^{n_k} \frac{\gamma_j^{(k)}}{\gamma_j^{(k)}} + \tau_{i} \sum_{j=n_k+1}^{p_i} \frac{\gamma_j^{(k)}}{\gamma_j^{(k)}} - \tau_i \sum_{j=1}^{q_i} \frac{\beta_j^{(k)}}{\beta_j^{(k)}} - \sum_{j=1}^{m_k} \frac{\delta_j^{(k)}}{\gamma_j^{(k)}}
\]

\(\tau_{i} \) are positives for \(i = 1 \) to \(R \), \(\tau_{i} \) are positives for \(\tau^{(k)} = 1 \) to \(R^{(k)} \)

The complex numbers \(z_k \) are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the asymptotic expansion in the following convenient form:

\[
\mathbb{R}(z_1, \ldots, z_r) = 0(\max(|z_1|, \ldots, |z_r|), \max(|z_1|, \ldots, |z_r|) \rightarrow 0
\]

\[
\mathbb{R}(z_1, \ldots, z_r) = 0(\min(|z_1|, \ldots, |z_r|), \min(|z_1|, \ldots, |z_r|) \rightarrow \infty
\]

where, with \(k = 1, \ldots, r: \alpha_k = \min[\text{Re}(\alpha_j^{(k)})], j = 1, \ldots, m_k \) and

\[
\beta_k = \max[\text{Re}(\beta_j^{(k)}), j = 1, \ldots, m_k
\]

\[
\gamma_k = \min[\text{Re}(\gamma_j^{(k)}), j = 1, \ldots, m_k
\]
Serie representation of Aleph-function of several variables is given by

\[\mathcal{N}(y_1, \ldots, y_r) = \sum_{G_1, \ldots, G_r = 0}^{\infty} \sum_{g_1 = 0}^{m_1} \cdots \sum_{g_r = 0}^{m_r} \left(\frac{(-1)^{G_1 + \cdots + G_r}}{\delta_{g_1}! G_1! \cdots \delta_{g_r}! G_r!} \psi(\eta_{G_1, g_1}, \ldots, \eta_{G_r, g_r}) \right) \times \theta_1(\eta_{G_1, g_1}) \cdots \theta_r(\eta_{G_r, g_r}) y_1^{-\eta_{G_1, g_1}} \cdots y_r^{-\eta_{G_r, g_r}} \] (1.6)

Where \(\psi(\cdot, \cdots, \cdot) \), \(\theta_i(\cdot) \), \(i = 1, \cdots, r \) are given respectively in (1.2), (1.3) and

\[\eta_{G_i, g_i} = \frac{d^{(i)}_{g_i} + G_i}{d^{(i)}_{g_i}} \quad \eta_{G_r, g_r} = \frac{d^{(r)}_{g_r} + G_r}{d^{(r)}_{g_r}} \]

which is valid under the conditions

\[\delta^{(i)}_{g_i}[d^{(i)}_{g_i} + p_i] \neq \delta^{(i)}_{g_i}[d^{(i)}_{g_i} + G_i] \] (1.7)

for \(j \neq m_i, m_i = 1, \cdots \eta_{G_i, g_i}; p_i, n_i = 0, 1, 2, \cdots; y_i \neq 0, i = 1, \cdots, r \) (1.8)

Consider the Aleph-function of \(s \) variables

\[\mathcal{N}(z_1, \cdots, z_s) = \mathcal{N}^{0,N;M_1,N_1,\cdots,M_s,N_s}_{P_1, Q_1, \ldots, P_s, Q_s} \left(\begin{array}{l} z_1 \\ \vdots \\ z_s \end{array} \right) = \begin{bmatrix} y_1^{(1)} \cdot \cdot \cdot y_1^{(r')} \\ \vdots \\ y_{s_i}^{(1)} \cdot \cdot \cdot y_{s_i}^{(r')} \end{bmatrix} \left(\begin{array}{c} \mu_1^{(1)} \cdot \cdot \cdot \mu_1^{(r')} \\ \vdots \\ \mu_s^{(1)} \cdot \cdot \cdot \mu_s^{(r')} \end{array} \right) \\
\left[\begin{array}{c} \beta_1^{(1)} \cdot \cdot \cdot \beta_1^{(r')} \\ \vdots \\ \beta_s^{(1)} \cdot \cdot \cdot \beta_s^{(r')} \end{array} \right] \left(\begin{array}{c} \alpha_1^{(1)} \cdot \cdot \cdot \alpha_1^{(r')} \\ \vdots \\ \alpha_s^{(1)} \cdot \cdot \cdot \alpha_s^{(r')} \end{array} \right) \end{bmatrix} \]

\[\frac{1}{(2\pi i)^s} \int_{L_1} \cdots \int_{L_s} \zeta(t_1, \cdots, t_s) \prod_{k=1}^{s} \phi_k(t_k) z_k^{t_k} dt_1 \cdots dt_s \] (1.9)

with \(\omega = \sqrt{-1} \)

\[\zeta(t_1, \cdots, t_s) = \frac{\prod_{j=1}^{r'} \Gamma(1 - u_j + \sum_{k=1}^{s} \mu_j^{(k)} t_k)}{\prod_{i=1}^{r'} [t_i \prod_{j=N+1}^{P_i} \Gamma(u_{ji} - \sum_{k=1}^{s} \mu_{ji}^{(k)} t_k)] \prod_{j=1}^{Q_i} \Gamma(1 - v_{ji} + \sum_{k=1}^{s} v_{ji}^{(k)} t_k)]} \] (1.10)

and

\[\phi_k(t_k) = \frac{\prod_{i=1}^{M_k} \Gamma(b_i^{(k)} - \beta_i^{(k)} t_k) \prod_{j=1}^{N_k} \Gamma(1 - a_j^{(k)} + \alpha_j^{(k)} s_k)}{\prod_{i=1}^{r'} [t_i^{(k)} \prod_{j=M_k+1}^{Q_j^{(k)}} \Gamma(1 - b_j^{(k)} t_k + \beta_j^{(k)} t_k)] \prod_{j=1}^{P_j^{(k)}} \Gamma(1 - a_j^{(k)} + \alpha_j^{(k)} s_k)]} \] (1.11)

Suppose, as usual, that the parameters

\[u_j, j = 1, \cdots, P; v_j, j = 1, \cdots, Q; \]
\(a_j^{(k)}, j = 1, \ldots, N_k; a_{ji}^{(k)}, j = n_k + 1, \ldots, P_i^{(k)}; \)

\(b_j^{(k)}, j = m_k + 1, \ldots, Q_i^{(k)}; b_j^{(k)}, j = 1, \ldots, M_k; \)

with \(k = 1, \ldots, s, i = 1, \ldots, r', \gamma^{(k)} = 1, \ldots, r^{(k)} \)

are complex numbers, and the \(\alpha's, \beta's, \gamma's \) and \(\delta's \) are assumed to be positive real numbers for standardization purpose such that

\[
U_i^{(k)} = \sum_{j=1}^{N} \mu_j^{(k)} + \sum_{j=N+1}^{P_i} \mu_{ji}^{(k)} + \sum_{j=1}^{N_k} \alpha_j^{(k)} + \sum_{j=N_k+1}^{P_i} \alpha_{ji}^{(k)} - \sum_{j=1}^{M_k} \beta_j^{(k)} - \sum_{j=1}^{Q_i} \sum_{j=N_k+1}^{P_i} \alpha_{ji}^{(k)} - \sum_{j=1}^{M_k} \beta_j^{(k)} - \sum_{j=M_k+1}^{Q_i} \beta_j^{(k)} \leq 0
\] (1.12)

The real numbers \(\tau_i \) are positives for \(i = 1, \ldots, r' \), \(\tau_i^{(k)} \) are positives for \(\gamma^{(k)} = 1, \ldots, r^{(k)} \)

The contour \(L_k \) is in the \(t_k p \) lane and run from \(\sigma - i\infty \) to \(\sigma + i\infty \) where \(\sigma \) is a real number with loop, if necessary, ensuring that the poles of \(\Gamma(b_j^{(k)} - \beta_j^{(k)} t_k) \) with \(j = 1 \) to \(M_k \) are separated from those of \(\Gamma(1 - u_j + \sum_{i=1}^{s} \beta_j^{(k)} t_k) \) with \(j = 1 \) to \(N \) and \(\Gamma(1 - a_j^{(k)} + \alpha_j^{(k)} t_k) \) with \(j = 1 \) to \(N_k \) to the left of the contour \(L_k \). The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H-function given by as:

\[
\arg z_k < \frac{1}{2} B_i^{(k)} \pi, \text{ where}
\]

\[
B_i^{(k)} = \sum_{j=1}^{N} \mu_j^{(k)} - \sum_{j=N+1}^{P_i} \mu_{ji}^{(k)} - \sum_{j=1}^{Q_i} \sum_{j=1}^{Q_i} \beta_j^{(k)} - \sum_{j=N_k+1}^{P_i} \alpha_{ji}^{(k)} + \sum_{j=1}^{M_k} \beta_j^{(k)} - \sum_{j=M_k+1}^{Q_i} \beta_j^{(k)} > 0, \text{ with } k = 1, \ldots, s, i = 1, \ldots, r, \gamma^{(k)} = 1, \ldots, r^{(k)}
\] (1.13)

The complex numbers \(z_k \) are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form:

\[\mathcal{N}(z_1, \ldots, z_s) = 0(|z_1|^{\alpha'_1}, \ldots, |z_s|^{\alpha'_s}), \max(|z_1|, \ldots, |z_s|) \to 0 \]

\[\mathcal{N}(z_1, \ldots, z_s) = 0(|z_1|^{\beta'_1}, \ldots, |z_s|^{\beta'_s}), \min(|z_1|, \ldots, |z_s|) \to \infty \]

where, \(k = 1, \ldots, z : \alpha'_k = \min[\Re(b_j^{(k)}/\beta_j^{(k)})], j = 1, \ldots, M_k \) and

\[\beta'_k = \max[\Re((a_j^{(k)} - 1)/\alpha_j^{(k)})], j = 1, \ldots, N_k \]

We will use these following notations in this paper

\[U = P_i, Q_i, \tau_i; r'; V = M_1, N_1; \ldots, M_s, N_s \] (1.15)
The multivariable Aleph-function write:

\[W = P_{l_1} Q_{r_1} P_{l_2} Q_{r_2} \cdots P_{l_s} Q_{r_s} ; r^{(1)}, \cdots, r^{(s)} \]

(1.16)

\[A = \{ (u_j; \mu_j^{(1)}, \cdots, \mu_j^{(s)})_{1,N_j} \}, \{ \nu_j (u_j; \mu_j^{(1)}, \cdots, \mu_j^{(s)})_{N+1,P_i} \} \]

(1.17)

\[B = \{ \nu_j (v_j^{(1)}, \cdots, v_j^{(s)})_{M+1,Q_j} \} \]

(1.18)

\[C = (a_j^{(1)}; \alpha_j^{(1)})_{1,N_1}, \nu_j^{(1)} (a_j^{(1)}; \alpha_j^{(1)})_{N_1+1,P_1} \cdots, \nu_j^{(s)} (a_j^{(s)}; \alpha_j^{(s)})_{N_s+1,P_s} \]

(1.19)

\[D = (b_j^{(1)}; \beta_j^{(1)})_{1,M_1}, \nu_j^{(1)} (b_j^{(1)}; \beta_j^{(1)})_{M_1+1,Q_1} \cdots, \nu_j^{(s)} (b_j^{(s)}; \beta_j^{(s)})_{M_s+1,Q_s} \]

(1.20)

The multivariable Aleph-function write:

\[\mathcal{N}(z_1, \cdots, z_s) = \mathcal{N}_{U:W}^{N:V} \left(\begin{array}{c} z_1 \\ \vdots \\ z_s \end{array} \right) \begin{array}{c} A : C \\ \vdots \\ B : D \end{array} \]

(1.21)

The generalized polynomials defined by Srivastava [6], is given in the following manner :

\[S_{N_1, \cdots, N_t}^{M_1, \cdots, M_t} [y_1, \cdots, y_t] = \sum_{K_1=0}^{N_1/M_1} \cdots \sum_{K_t=0}^{N_t/M_t} \frac{(-N_1)_{M_1}K_1}{K_1!} \cdots \frac{(-N_t)_{M_t}K_t}{K_t!} A[N_1, K_1; \cdots; N_t, K_t] y_1^{K_1} \cdots y_t^{K_t} \]

(1.22)

Where \(M_1, \cdots, M_t \) are arbitrary positive integers and the coefficients \(A[N_1, K_1; \cdots; N_t, K_t] \) are arbitrary constants, real or complex. In the present paper, we use the following notation

\[a_1 = \frac{(-N_1)_{M_1}K_1}{K_1!} \frac{(-N_t)_{M_t}K_t}{K_t!} A[N_1, K_1; \cdots; N_t, K_t] \]

(1.23)

In the document, we note:

\[G(\eta_{G_1, g_1}, \cdots, \eta_{G_r, g_r}) = \phi(\eta_{G_1, g_1}, \cdots, \eta_{G_r, g_r}) \theta_1(\eta_{G_1, g_1}) \cdots \theta_r(\eta_{G_r, g_r}) \]

(1.24)

where \(\phi(\eta_{G_1, g_1}, \cdots, \eta_{G_r, g_r}), \theta_1(\eta_{G_1, g_1}), \cdots, \theta_r(\eta_{G_r, g_r}) \) are given respectively in (1.2) and (1.3)

The spheroidal function \(\psi_{\alpha \eta}(c, \eta) \) of general order \(\alpha > -1 \) can be expanded as ([2] an [7]).

\[\psi_{\alpha \eta}(c, \eta) = \frac{\pi^{\alpha+1}}{V_{\alpha \eta}(c)} \sum_{k=0, or 1}^{*} a_k(c, \alpha \eta)(c \eta)^{-\alpha - \frac{1}{2}} J_{k + \alpha + \frac{1}{2}}(c \eta) \]

(1.25)

which represents the function uniformly on \((\infty, \infty)\), where the coefficients \(a_k(c, \alpha \eta) \) satisfy the recursion formula [14, eq.67] and the asterisk over the summation sign indicates that the sum is taken over only even or odd values of \(k \) according as \(n \) is even or odd. As \(c \to 0, a_k(c, \alpha \eta) \to 0, k \neq n \)

2. Required integral

We have the following result, see Marichev et al ([1], 2.2.11, eq.26 page 316)

ISSN: 2231-5373 http://www.ijmttjournal.org

Page 52
Lemme
\[
\int_{0}^{+\infty} \frac{x^{\alpha-1}}{\sqrt{(x^2 + z^2)(x^2y^2 + z^2)}(\sqrt{x^2 + z^2} + \sqrt{x^2y^2 + z^2})^\mu} \, dx = 2^{-\mu-1}z^{\alpha-\mu-2}B \left(1 + \frac{\mu - \alpha}{2}, \frac{\alpha}{2}\right) \\
\times {}_2 F_1 \left[\frac{\alpha}{2}, \frac{\mu + 1}{2}; 1 + \mu, 1 - y^2\right]
\]
where \(Re\zeta, Re\gamma > 0, 0 < Re(\alpha) < Re(\mu) + 2 \)

3. Main integral

Let \(X_{\alpha,\beta} = \frac{x^{\alpha-1}}{(\sqrt{x^2 + z^2} + \sqrt{(x^2y^2 + z^2)})^\mu} \), we have the following generalized infinite integral

Theorem
\[
\int_{0}^{+\infty} \frac{x^{\alpha-1}}{\sqrt{(x^2 + z^2)(x^2y^2 + z^2)}(\sqrt{x^2 + z^2} + \sqrt{x^2y^2 + z^2})^\mu} \, dx = \frac{i^n\sqrt{2\pi}}{V_{\alpha\mu}(c^\sigma)} 2^{-\mu-1}z^{\alpha-\mu-1} \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \sum_{G_1, \ldots, G_r = 0}^{\infty} (\gamma(2m+k) + \sum_{i=1}^{r} K_i(\gamma_i - \mu_i)) \sum_{\gamma = 0}^{m_r} \frac{q_1(-)G_1\cdots G_r}{\delta_{g_1}G_1!\cdots \delta_{g_r}G_r!} \frac{G(\eta G_1, \eta_1, \ldots, \eta_{G_r, G_r})}{m!} \frac{(-)^m a_k(c^\sigma|an)}{(m + k + \alpha + \frac{3}{2})}
\]

\[
y_1 K_1 \cdots y_t K_t \sum_{\gamma_1, \ldots, \gamma_t} \sigma(2m+k) - (\gamma(2m+k) + \sum_{i=1}^{r} K_i(\gamma_i - \mu_i)) + \sum_{\gamma_1, \ldots, \gamma_t} \frac{1}{n!} (1 - y^2)^n
\]

\[
z^2(\beta - \gamma)(2m+k) + \sum_{i=1}^{r} K_i(\gamma_i - \mu_i) + \sum_{\gamma_1, \ldots, \gamma_t} \eta G_1, \eta_1, \ldots, \eta_t \frac{1}{n!} (1 - y^2)^n
\]

\[
(-\frac{1}{2})(\alpha + \beta)(2m+k) + \sum_{i=1}^{r} K_i(\gamma_i - \mu_i) + \sum_{\gamma_1, \ldots, \gamma_t} \eta G_1, \eta_1, \ldots, \eta_t \frac{1}{n!} (1 - y^2)^n
\]

\[
(-\frac{1}{2})(\alpha + \beta)(2m+k) + \sum_{i=1}^{r} K_i(\gamma_i - \mu_i) + \sum_{\gamma_1, \ldots, \gamma_t} \eta G_1, \eta_1, \ldots, \eta_t \frac{1}{n!} (1 - y^2)^n
\]
where

\[(-n' + \frac{1}{2}(1 - \mu - \delta RA - \sum_{i=1}^{t} K_i \mu_i - \sum_{i=1}^{r} \eta_{G_i,g_i,b_i}; \epsilon_1, \ldots, \epsilon_s), \]

\[(+\frac{1}{2}(1 - \mu - \delta RA - \sum_{i=1}^{t} K_i \mu_i - \sum_{i=1}^{r} \eta_{G_i,g_i,b_i}; \epsilon_1, \ldots, \epsilon_s), \]

\[(-\mu - \delta RA - \sum_{i=1}^{t} K_i \mu_i - \sum_{i=1}^{r} \eta_{G_i,g_i,b_i}; \epsilon_1, \ldots, \epsilon_s), A : C \]

\[(-n'-\mu - \delta RA - \sum_{i=1}^{t} K_i \mu_i - \sum_{i=1}^{r} \eta_{G_i,g_i,b_i}; \epsilon_1, \ldots, \epsilon_s), B : D \]

\[\text{where } U_{43} = P_t + 4; Q_t + 3; t_i; r' \]

Provided that

a) \(\min \{ \gamma_i, \mu_i, \alpha_j, \beta_j, \eta_k, \epsilon_k \} > 0, i = 1, \ldots, t, j = 1, \ldots, r, k = 1, \ldots, s \)

b) \(\Re z, \Re y > 0, \)

c) \[0 < \Re (\rho + (2m + k)\beta) + \sum_{i=1}^{r} \alpha_i \min_{1 \leq j \leq m} \Re \left(d_j^{(i)} \delta_j^{(i)} \right) + \sum_{i=1}^{s} \eta_i \min_{1 \leq j \leq M_i} \Re \left(b_j^{(i)} \beta_j^{(i)} \right) < \]

\[\Re (\rho + (2m + k)\gamma) + \sum_{i=1}^{r} \beta_i \min_{1 \leq j \leq m_i} \Re \left(d_j^{(i)} \beta_j^{(i)} \right) + \sum_{i=1}^{s} \epsilon_i \min_{1 \leq j \leq M_i} \Re \left(b_j^{(i)} \beta_j^{(i)} \right) + 2 \]

d) \(|\arg z_k| < \frac{1}{2} A_i^{(k)} \pi, \) where \(A_i^{(k)} \) is defined by (1.5); \(i = 1, \ldots, r \)

e) \(|\arg Z_k| < \frac{1}{2} B_i^{(k)} \pi, \) where \(B_i^{(k)} \) is defined by (1.13); \(i = 1, \ldots, s \)

Proof

Expressing the spheroidal function involved in the integrand in its expression form with the help of (1.25) and the Bessel serie, the Aleph-function of \(r \) variables in series with the help of equation (1.6), the general class of polynomial of several variables \(S_{N_1,\ldots,N_t}^{M_1,\ldots,M_t} \) with the help of the Aleph-function of \(s \) variables in Mellin-Barnes contour integral with the help of equation (1.9), changing the order of integration ans summation (which is easily seen to be justified due to the absolute convergence of the integral and the summations involved in the process) and then evaluating the resulting integral with the help of equation (2.1) and expressing the Gauss hypergeometric function \(\text{}_{2}F_{1} \) in serie, use the relations \(\Gamma(a)(a)_{n} = \Gamma(a + n) \) and the relation \(a = \frac{\Gamma(a + 1)}{\Gamma(a)} \) with \(\Re(a) > 0 \). Finally interpreting the result thus obtained with the Mellin-barnes contour integral, we arrive at the desired result.

4. Multivariable I-function

If \(t_i, t_i(1), \ldots, t_i(s) \to 1 \), the Aleph-function of several variables degeneare to the I-function of several variables. The generalized simple integral have been derived in this section for multivariable I-functions defined by Sharma et al [3].

Corollary 1
\[\int_0^{+\infty} \frac{x^{\alpha-1}}{\sqrt{(x^2 + z^2)(x^2 + y^2)(x^2 + z^2 + \sqrt{x^2 + y^2})}} \psi_\alpha(c, X_{\beta, \gamma}) S_{N_1, \ldots, N_t} \left(\begin{array}{c} y_1 X_{\gamma_1, \mu_1} \\ \vdots \\ y_t X_{\gamma_t, \mu_t} \end{array} \right) \]

\[\sum_{n'=0}^{\infty} \sum_{K_1=0}^{[N_1/M_1]} \cdots \sum_{K_t=0}^{[N_t/M_t]} \sum_{g_1=0}^{m_1} \cdots \sum_{g_r=0}^{m_r} a_{g_1 \ldots g_r G_1 \ldots G_r} \frac{(-)^{G_1 + \cdots + G_r}}{G_1! \cdots G_r!} G(\eta_{G_1, g_1}, \ldots, \eta_{G_r, g_r}) \]

\[\frac{1}{n'!} \left(1 - \frac{y^2}{z^2} \right)^{n'} \]

\[\left(1 - n' - \frac{1}{2} (\alpha + \beta)(2m + k) + \sum_{i=1}^{t} K_i \gamma_i + \sum_{i=1}^{r} \eta_{G_i, g_i} (\alpha_i - \beta_i) \right) \left(\begin{array}{c} \frac{\eta_1}{2} \cdots \frac{\eta_t}{2} \end{array} \right) \]

\[\left(\frac{1}{2} (\alpha - \mu + (\beta - \gamma)(2m + k) + \sum_{i=1}^{t} K_i (\gamma_i - \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i} (\alpha_i - \beta_i) \right) \left(\begin{array}{c} \frac{\epsilon_1 - \eta_1}{2} \cdots \frac{\epsilon_r - \eta_r}{2} \end{array} \right) \]

\[\left(-n' + \frac{1}{2} (1 - \mu - \delta RA - \sum_{i=1}^{t} K_i \mu_i - \sum_{i=1}^{r} \eta_{G_i, g_i} (\beta_i) \right) \epsilon_1, \cdots, \epsilon_r) \]

\[\left(+ \frac{1}{2} (1 - \mu - \delta RA - \sum_{i=1}^{t} K_i \mu_i - \sum_{i=1}^{r} \eta_{G_i, g_i} (\beta_i) \right) \epsilon_1, \cdots, \epsilon_r) \]

\[\frac{\alpha \gamma}{2} (\alpha + \beta)(2m + k) + \sum_{i=1}^{t} K_i (\gamma_i - \mu_i) + \sum_{i=1}^{r} \eta_{G_i, g_i} (\alpha_i - \beta_i)) \]

6. Aleph-function of two variables
If \(s = 2 \), we obtain the Aleph-function of two variables defined by K. Sharma [5], and we have the following simple integrals.

\[
\text{Corollary 2}
\]

\[
\int_{0}^{+\infty} \frac{x^{\alpha-1}}{\sqrt{(x^2 + z^2)(x^2 + y^2)}} \left(\frac{1}{\sqrt{x^2 + z^2 + \sqrt{(x^2 + y^2)}}} \right) \psi_{\alpha\mu} (c^\sigma, X_{\beta;\gamma}) S_{M_1,\ldots,M_t} \left(y_1 X_{\gamma_1,\mu_1} \right) \cdots \left(y_t X_{\gamma_t,\mu_t} \right)
\]

\[
N_{U;V}^{0,N;V} \left(\begin{array}{c} Z_1 X_{\alpha_1,\beta_1} \\ \vdots \\ Z_r X_{\alpha_r,\beta_r} \end{array} \right) N_{U;W}^{0,N;V} \left(\begin{array}{c} Z_1 X_{\eta_1,\epsilon_1} \\ \vdots \\ Z_r X_{\eta_r,\epsilon_r} \end{array} \right) dx = \frac{i^n \sqrt{2\pi}}{\alpha^n (c^\sigma)^n} 2^{-\mu-1} \left(\begin{array}{c} z_1 \cdots z_r \end{array} \right) \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \sum_{G_1,\ldots,G_r=0}^{\infty} \frac{(-)^m a_k (c^\sigma | \alpha^n)}{m! \Gamma(m + k + \alpha + \frac{3}{2})}
\]

\[
\sum_{n'=0}^{\infty} \sum_{K_1=0}^{[N_1/M_1]} \cdots \sum_{g_1=0}^{m_1} \cdots \sum_{g_r=0}^{m_r} \prod_{r} \eta_g G_1! \cdots G_r! G(\eta G_1, \eta_1, \ldots, \eta G_r, \eta_r)\frac{1}{n'!} \left(1 - \frac{y^2}{z^2} \right)^{n'}
\]

\[
y_1^{K_1} \cdots y_t^{K_t} \sum_{g_1=0}^{m_1} \cdots \sum_{g_r=0}^{m_r} \delta_{g_1} G_1! \cdots \delta_{g_r} G_r! G(\eta G_1, \eta_1, \ldots, \eta G_r, \eta_r)\frac{1}{n'!} \left(1 - \frac{y^2}{z^2} \right)^{n'}
\]

\[
(1-n')^{\frac{1}{2} (\alpha + \beta (2m + k)) + \sum_{i=1}^{t} K_i \gamma_i + \sum_{i=1}^{r} \eta G_i, \eta_i, \alpha_i; \eta_1, \frac{\eta_1}{2}, \frac{\eta_1}{2})
\]

\[
(\frac{1}{2} (\alpha - \mu + (\beta - \gamma)(2m + k) + \sum_{i=1}^{t} K_i \gamma_i + \sum_{i=1}^{r} \eta G_i, \eta_i, \alpha_i; \eta_1, \frac{\eta_1}{2}, \frac{\eta_1}{2})
\]

\[
(-\frac{1}{2} (\mu + \gamma (2m + k) + \sum_{i=1}^{t} K_i \mu_i + \sum_{i=1}^{r} \eta G_i, \eta_i, \beta_i; \frac{\eta_1}{2}, \frac{\eta_1}{2})
\]

\[
(-n'+\frac{1}{2} (1 - \mu - \delta RA - \sum_{i=1}^{t} K_i \mu_i - \sum_{i=1}^{r} \eta G_i, \eta_i, \beta_i; \epsilon_1, \epsilon_2),
\]

\[
(+\frac{1}{2} (1 - \mu - \delta RA - \sum_{i=1}^{t} K_i \mu_i - \sum_{i=1}^{r} \eta G_i, \eta_i, \beta_i; \epsilon_1, \epsilon_2),
\]

\[
(-\mu - \delta RA - \sum_{i=1}^{t} K_i \mu_i - \sum_{i=1}^{r} \eta G_i, \eta_i, \beta_i; \epsilon_1, \epsilon_2), A : C
\]

\[
(-n'-\mu - \delta RA - \sum_{i=1}^{t} K_i \mu_i - \sum_{i=1}^{r} \eta G_i, \eta_i, \beta_i; \epsilon_1, \epsilon_2), B : D
\]

(5.1)
under the same conditions and notation that (3.1) with \(s = 2 \)

6. I-function of two variables

If \(\epsilon_i, \epsilon_{i+1}, \epsilon_{i+2} \rightarrow 1 \), then the Aleph-function of two variables degenerates in the I-function of two variables defined by Sharma et al [4] and we obtain the same formula with the I-function of two variables.

Corollary 3

\[
\int_0^\infty \frac{x^{\alpha-1}}{\sqrt{(x^2 + z^2)(x^2 + y^2)}} \psi_{\alpha n}(c^\sigma, X_{\beta, \gamma}) S_{N_1, \ldots, N_t} \left(\begin{array}{c}
Y_1 \alpha_{\gamma_1, \mu_1} \\
\vdots \\
Y_t \alpha_{\gamma_t, \mu_t}
\end{array} \right) d\alpha = \frac{\sqrt{2\pi}}{V_{\alpha n}(c^\sigma)} 2^{\mu-\alpha-2} \sum_{k=0, \sigma} \sum_{m=0} \sum_{G_1, \ldots, G_t = 0}^\infty \sum_{n'=0}^\infty [N_1/M_1] \ldots K_i=0 \sum_{K_i=0} \sum_{g_1=0} \ldots \sum_{g_t=0} a_{11} \ldots (-G_1 \cdots G_t) \delta_{g_1} G_1! \cdots \delta_{g_t} G_t! G(\eta G_1, \eta G_2, \ldots, \eta G_r, \xi_1, \ldots, \xi_r) (\xi_{11}^{m_1} \cdots \xi_{rt}^{m_t}) m! \Gamma(m + k + \alpha + \frac{3}{2})
\]

\[
y_1 K_1 \cdots y_t K_t \prod_{i=1}^r \eta_i G_i, \xi_i \frac{\sigma(2m+k)}{2} - (\gamma(2m+k) + \sum_{i=1}^t K_i \mu_i) + \sum_{i=1}^r \eta^{\frac{\alpha_i - \beta_i}{2}} \frac{1}{n!} \frac{1}{1 - \frac{y^2}{x^2}}
\]

\[
x^{(\beta - \gamma)(2m+k) + \sum_{i=1}^t K_i (\gamma_i - \mu_i) + \sum_{i=1}^r \eta G_i, \xi_i, \alpha_i, \beta_i} F_0 \{N_1, N_2, \ldots, N_t \} F_0^4 \{N_1, N_2, \ldots, N_t \} \left(\begin{array}{c}
Z_1 z^{\eta_1 - \varepsilon_1} \alpha_1 - \varepsilon_1 \\
\vdots \\
Z_t z^{\eta_t - \varepsilon_t} \alpha_t - \varepsilon_t
\end{array} \right)
\]

\[
(1-n^t-\frac{1}{2}(\alpha + \beta(2m+k) + \sum_{i=1}^t K_i \gamma_i + \sum_{i=1}^r \eta G_i, \xi_i, \alpha_i, \beta_i, \frac{\eta_1}{2}, \frac{\eta_2}{2}),
\]

\[
(\frac{1}{2}(\alpha - \mu + (\beta - \gamma)(2m+k) + \sum_{i=1}^t K_i (\gamma_i - \mu_i) + \sum_{i=1}^r \eta G_i, \xi_i, \alpha_i - \beta_i), \frac{\xi_{11} - m_1}{2}, \frac{\xi_{2t} - m_t}{2}),
\]

\[
(-n^t+\frac{1}{2}(1 - \mu - \delta R A - \sum_{i=1}^t K_i \mu_i - \sum_{i=1}^r \eta G_i, \xi_i, \beta_i, \varepsilon_1, \varepsilon_2),
\]

\[
(+\frac{1}{2}(1 - \mu - \delta R A - \sum_{i=1}^t K_i \mu_i - \sum_{i=1}^r \eta G_i, \xi_i, \beta_i, \varepsilon_1, \varepsilon_2),
\]

ISSN: 2231-5373 http://www.ijmttjournal.org Page 57
\[(-\mu - \delta R A - \sum_{i=1}^{t} K_i \mu_i - \sum_{i=1}^{r} \eta G_{i, g_{i}} \beta_i; \epsilon_1, \epsilon_2), A : C \quad . \quad \]
\[(-n^2 - \delta R A - \sum_{i=1}^{t} K_i \mu_i - \sum_{i=1}^{r} \eta G_{i, g_{i}} \beta_i; \epsilon_1, \epsilon_2), B : D \quad \]

(6.1)

under the same conditions and notation that (3.1) with \(s = 2 \) and \(\epsilon_i, \epsilon_i', \epsilon_i'' \rightarrow 1 \).

7. Conclusion

In this paper we have evaluated a unified generalized infinite integral involving the multivariable Aleph-functions, a class of polynomials of several variables and the spheroidal function and general arguments. The integral established in this paper is of very general nature as it contains multivariable Aleph-function, which is a general function of several variables studied so far. Thus, the integral established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

