Behaviour of Solutions of Linear Systems

Vijayalakshmi Menon R
Asst. Prof., Dept. of Mathematics, Govt. College, Madappally, Vatakara, Calicut, Kerala, S. India

Abstract
This paper deals with the behaviour of solutions of linear systems. The notions of stability, boundedness and asymptotic behaviour of solutions of a general linear system are studied.

AMS SUBJECT CLASSIFICATION CODE : 34D20

Keywords: Stability, perturbation, boundedness, almost-constant, trace, perturbed equation, perturbing matrix.

1. INTRODUCTION
We consider the behaviour of the solutions of the linear differential equation
\[\frac{d}{dt} z = [A + B(t)]z \quad \text{(1)} \]
where \(A \) is a constant matrix and \(B(t) \) is small as \(t \to \infty \).
Two particularly important cases are those where \(||B(t)|| \to 0 \) or where \(\int_0^\infty ||B(t)|| dt < \infty \)

The solutions of (1) share many properties with the solutions of
\[\frac{dy}{dt} = Ay \quad \text{(2)} \]
so far as their behaviours are concerned.

In this paper, section 2 deals with the concept of stability of linear equations. In section 3, the boundedness property of solutions and the sufficient conditions for boundedness of solutions are studied in detail. Section 4 illustrates the asymptotic behaviour of solutions of linear systems.

2. STABILITY OF LINEAR EQUATIONS

2.1 Defn: The solutions of \(\frac{dy}{dt} = A(t)y \to [3] \)
are stable with respect to a property P and perturbations \(B(t) \) of type T if the solutions of
\[\frac{d}{dt} z = [A(t) + B(t)]z \to (4) \]
also possess property P. If this is not true, the solutions of (3) are said to be unstable with respect to property P under perturbations of type T.
To illustrate the above definition, we consider two simple differential equations:
\[\frac{du}{dt} = -au \to (5) \]
and
\[\frac{dv}{dt} = [-a + b(t)]v \to (6) \]

\(a > 0 \) and \(b(t) \to 0 \) as \(t \to \infty \).

Considering the solutions of (5) and (6)
\[\frac{du}{dt} = -au \Rightarrow \frac{du}{dt} = -ad t \]
\[\Rightarrow \log u = -at + c \]
\[\Rightarrow u = ce^{-at} \Rightarrow \lim_{t \to \infty} u = 0 \]
\[\frac{dv}{dt} = [-a + b(t)]v \]
\[\Rightarrow \frac{dv}{v} = [-a + b(t)]dt \]
\[\Rightarrow \log v = -at + \int b(t)dt \]
\[\Rightarrow v = e^{-at} + \int b(t)dt \]
\[\Rightarrow \lim_{t \to \infty} v = 0 \]

Thus, both solutions \(u \) and \(v \) tend to zero as \(t \to \infty \).

Also, \(\lim_{t \to \infty} \frac{\log u}{t} = \lim_{t \to \infty} \frac{\log v}{t} = -a \)

So, both solutions \(u \) and \(v \) have the following properties:

1) \(\lim_{t \to \infty} u = \lim_{t \to \infty} v = 0 \)

and

2) \(\lim_{t \to \infty} \frac{\log u}{t} = \lim_{t \to \infty} \frac{\log v}{t} = -a \)

Now suppose \(a=0 \) and \(b(t) = \frac{1}{t} \).

Then \(\frac{du}{dt} = -au \Rightarrow u = ce^{-at} \)
\[\Rightarrow u = c \text{ when } a = 0 \]
and
\[\frac{dv}{dt} = [-a + b(t)]v \]
\[\Rightarrow \frac{dv}{v} = [-a + b(t)]dt \]
\[\Rightarrow \log v = -at + \log t \]
\[\Rightarrow v = te^{-at} \]
which is unbounded as \(t \to \infty \).

With respect to property (ii), since \(a=0 \),
\[\lim_{t \to \infty} \frac{\log u}{t} = 0 \]
Also,
\[\lim_{t \to \infty} \frac{\log v}{t} = 0 \]

Thus, there is stability with respect to property (ii) but instability with respect to property (i) – the property of boundedness.

2.2 Note:
If we replace \(\frac{1}{t} \) by a function which is integrable over \((t_0, \infty)\), then boundedness will be preserved.

2.3 Note:
The most important property of solutions is that of boundedness. If a solution is bounded, we are interested in knowing whether or not it approaches zero at \(t \to \infty \).

3.1 BOUNDEDNESS OF SOLUTIONS([1],[2])

3.1.1 Definition:
We call the coefficient matrix \(A(t) \) of the differential equation \(\frac{dz}{dt} = A(t)z \) almost constant if
\[
\lim_{t \to \infty} A(t) = A \text{ a constant matrix.}
\]

3.1.2 Lemma (Fundamental lemma):
If \(u, v \geq 0 \), if \(C_1 \) is a positive constant,
and if
\[
u \leq C_1 + \int_0^t uv dt_1 \tag{7}\]
then \(u \leq C_1 \exp(\int_0^t vd_1) \tag{8}\)
Proof: From (7), we have
\[
\frac{uv}{C_1 + \int_0^t uv dt_1} \leq v \to 9
\]
Integrating both sides of (9) between 0 and \(t \), we get
\[
\log[C_1 + \int_0^t uv dt_1] - \log C_1 \leq \int_0^t v dt_1
\]
\[
\text{i.e.,} \log(\frac{C_1 + \int_0^t uv dt_1}{C_1}) \leq \int_0^t v dt_1
\]
\[
C_1 + \int_0^t uv dt_1 \leq C_1 \exp(\int_0^t v dt_1) \to 10
\]
\[
\therefore \quad u \leq C_1 + \int_0^t uv dt_1 \leq C_1 \exp(\int_0^t v dt_1) \to 11
\]
which is the fundamental lemma.

3.1.3 Theorem:
If all solutions of
\[
\frac{dy}{dt} = Ay \to 12
\]
where \(A \) is a constant matrix, are bounded as \(t \to \infty \), then the same is true of the solutions of
\[
\frac{dz}{dt} = [A + B(t)]z \to 13
\]
provided \(\int_0^\infty ||B(t)|| dt < \infty \)
Proof:
Equation (13) can be written as
\[
\frac{dz}{dt} = Az + B(t)z \to 14
\]
Every solution of (14) satisfies a linear integral equation
\[
z = y + \int_0^t Y(t - t_1)B(t_1)z(t_1) dt_1 \to 15
\]
where \(y \) is the solution of (12) for which \(y(0) = z(0) \) and
\(Y \) is the matrix solution of
\[
\frac{dy}{dt} = Ay, \quad y(0) = I \to 16
\]
we have \(y = Yz(0) \)
Let \(C_1 = \max_{t \geq 0} ||Y(t)||, \quad \sup_{t \geq 0} ||Y(t)|| \)
Then, from (15), we get
\[
||z|| \leq ||y|| + \int_0^t ||Y(t - t_1)|| ||B(t_1)|| ||z(t_1)|| dt_1
\]
\[
\leq C_1 + C_1 \int_0^t ||B(t_1)|| ||z(t_1)|| dt_1 \tag{17}
\]
Applying the fundamental lemma in (17), we get
\[
||z|| \leq C_1 \exp(\int_0^t ||B(t_1)|| dt_1) \to 18
\]
Since \(\int_0^\infty ||B(t)|| dt < \infty \) from (18), it follows that \(||z|| \) is bounded.
\(\therefore \) the solutions of equation (13) are bounded.
Hence, the theorem.

3.1.4 Theorem
If all the solutions of the equation
\[
\frac{dy}{dt} = Ay \to 19
\]
approach zero as \(t \to \infty \), the same holds for the solutions of
\[
\frac{dz}{dt} = [A + B(t)]z \to 20
\]
provided that \(||B(t)|| \leq C_1 \) for \(t \geq t_0 \), where \(C_1 \) is a constant which depends upon \(A \).

Proof
Every solution of (20) satisfies a linear integral equation
\[
z = y + \int_0^t Y(t - t_1)B(t_1) \to 21
\]
\[
z(t_1) dt_1 \to 22
\]
where \(Y \) is the matrix solution of
\[
\frac{dy}{dt} = Ay, \quad y(0) = I \to 23
\]
\[
\Rightarrow \log Y = At + B \to 24
\]
\[
\Rightarrow Y = e^{At+B} = Ce^{At} \to 25
\]
Since \(||Y|| \to 0 \) as \(t \to \infty \), \(\exists \) a positive constant \(C \) such that
\(||Y|| \leq C_2 e^{-Ct} \) for \(t \geq 0 \) \to (22)
By theorem 3.1.3, we have \(y = Yy(0) : ||y|| \leq C_2 e^{-Ct} \) for \(t \geq 0 \) \to (23)
Hence, from (21),
\[
||z|| \leq C_2 e^{-Ct} + C_2 \int_0^t e^{C(t-t_1)} ||B(t_1)|| ||z(t_1)|| dt_1 \to 26
\]
Since \(||B(t)|| \leq C_1 \) for \(t \geq t_0 \), we get
\[
||z|| e^{Ct} \leq C_2 + C_1 C_2 \int_0^t e^{C(t-t_1)} ||z(t_1)|| dt_1 \to 27
\]
Applying fundamental lemma in equation (25), we get
\[
||z|| e^{Ct} \leq C_2 e^{Ct} \to 28
\]
i.e., \(||z|| e^{Ct} \leq C_2 e^{Ct} e^{Ct} \to 29 \)
If $C_1C_2 \ll \infty$, then the above equation gives $||z|| \to 0$ as $t \to \infty$. But the constants C_2 and ω depend upon the characteristic roots of A. Hence, it follows that C_1 depends upon A. Hence the theorem.

3.2 SUFFICIENT CONDITIONS FOR BOUNDEDNESS OF SOLUTIONS (11)

In this section, the sufficient conditions required for the solutions of a linear system to be bounded, are being dealt with.

The boundedness of the solution of

$$\frac{dy}{dt} = A(t)y \to (28)$$

together with the condition $||B(t)|| \to 0$ as $t \to \infty$ is not sufficient to ensure the boundedness of all solutions of

$$\frac{dz}{dt} = [A(t) + B(t)]z \to (29)$$

Even if we amend the condition $||B(t)|| \to 0$ as $t \to \infty$, by the condition $\int_0^\infty ||B(t)|| dt < \infty$, the sufficiency remains unjustified. This fact is illustrated in the following theorem:

3.2.1 Theorem

There is an equation of the type

$$\frac{dy}{dt} = A(t)y$$

with the property that all solutions approach zero as $t \to \infty$, and a matrix $B(t)$ for which $\int_0^\infty ||B(t)|| dt < \infty$, such that all solutions of the equation

$$\frac{dz}{dt} = [A(t) + B(t)]z$$

are not bounded.

Proof: Consider the equations

$$\frac{dy_1}{dt} = -ay_1 \to (30)$$

and

$$\frac{dy_2}{dt} = [\sin(\log t) + \cos(\log t) - 2a]y_2 \to (31)$$

We solve for y_1 and y_2

Equation (30) $\to \frac{dy_1}{dy_1} = -a dt$

Integrating, $\log y_1 = -at + \log C_1$

i.e., $y_1 = C_1e^{-at}$

Equation (31)

$\to \frac{dy_2}{dt} = [\sin(\log t) + \cos(\log t) - 2a]dt$

Integrating,

$$\log y_2 = [tsin(\log t) - 2at] + \log C_2$$

$\therefore y_2 = C_2e^{tsin(\log t)-2at}$

Thus, the general solutions of (30) and (31) are respectively

$$y_1 = C_1e^{-at} \to (32)$$

and

$$y_2 = C_2e^{tsin(\log t)-2at} \to (33)$$

If ‘a’ is any negative constant, then every solution of (32) and (33) approach zero as $t \to \infty$

Let

$$B(t) = \begin{bmatrix} 0 & 0 \\ -a & 0 \end{bmatrix}$$

be the perturbing matrix.

The perturbed equation has the form

$$\frac{dz}{dt} = -az_1 \to (34)$$

and

$$\int_0^t e^{-t_1 \sin(\log t_1)} dt_1 > \int_0^t e^{-t_1 \sin(\log t_1)} dt_1 \to (35)$$

Equation (34) gives $z_1 = C_1e^{-at}$ and Equation (35) gives $z_2 = e^{-[\sin(\log t) - 2a]}$

$$\begin{cases}
C_2 + C_1 \int_0^t e^{-t_1 \sin(\log t_1)} dt_1 \\
C_2 + C_1 \int_0^t e^{-t_1 \sin(\log t_1)} dt_1
\end{cases}$$

Let $t = e^{[\log t + a]}$

If $1 < 2a < 1 + e^{-\frac{\pi}{2}}$, then

$$\int_0^t e^{-t_1 \sin(\log t_1)} dt_1 > \int_0^t e^{-t_1 \sin(\log t_1)} dt_1 > t(e^{\frac{\pi}{2}} - e^{-a}) \exp \left(-\frac{e^{-a}}{2}\right),$$

which implies the solutions of (34) and (35) will be bounded only if $C_1 = 0$

Now, $C_1 = 0 \Rightarrow z_1(0) = 0$

Thus, if $z_1(0) \neq 0$, the solutions of (35) are not bounded.

3.2.2 Theorem:

If all the solutions of the equation

$$\frac{dy}{dt} = A(t)y$$

are bounded, then all the solutions of the equation

$$\frac{dz}{dt} = [A(t) + B(t)]z$$

are bounded, provided

(a) $\int_0^\infty ||B(t)|| dt < \infty$

&

(b) $\lim_{t \to \infty} \int_0^t tr(A) dt > -\infty$

Proof: Expressing z in terms of y, we have

$$z = y + \int_0^t Y(t) Y^{-1}(t) B(t) z(t) dt_1$$

Thus,

$$||z|| \leq ||y|| + \int_0^t ||Y(t)|| ||Y^{-1}(t)|| ||B(t)|| ||z(t)|| dt_1$$

Since $detY = \exp \left[\int_0^t tr(A) dt \right]$ if condition (b) is satisfied, then

$$||Y^{-1}(t)||$$

is bounded as $t \to \infty$

Thus,

$$||z|| \leq C_1 + C_2 \int_0^t ||B(t)|| ||z(t)|| dt_1$$

Applying the fundamental lemma in the above equation, we get

$$||z|| \leq C_1 \exp \left(C_1 \int_0^t ||B(t)|| ||z(t)|| dt_1 \right)$$

Since $\int_0^t ||B(t)|| dt < \infty$, $||z||$ is bounded.

Hence, the theorem.
4. ASYMPTOTIC BEHAVIOUR OF SOLUTIONS

In the previous section, we have dealt with the necessary and sufficient conditions for the boundedness of a solution. If a solution is bounded, we are interested in knowing whether or not it approaches zero as \(t \to +\infty \), which depicts the asymptotic behaviour of the solutions.

Consider the linear system
\[
\frac{dy}{dt} = A(t)y, \quad t \geq 0 \to (36)
\]
where \(A(t) \) is a real-valued continuous \(nxn \) matrix on \(0 \leq t < \infty \).

We want to find the behaviour of solutions of (36) as \(t \to +\infty \).

If the eigen values of the matrix \(A \) are known, all solutions of (36) are completely determined. Hence, the eigen values determine the behaviour of solutions as \(t \to +\infty \).

4.1 Theorem:

Let \(A(t) \) be a real-valued, continuous, \(nxn \) matrix on \([0, \infty) \).

Let \(M(t) \) be the largest eigen value of \((t) + A^T(t) \), where \(A^T(t) \) is the transpose of the matrix \(A(t) \).

If \(\lim_{t \to +\infty} \int_{t_0}^{t} M(s)ds = -\infty \) \((t_0 > 0 \text{ is fixed}) \to (37) \), then every solution of (36) tends to zero as \(t \to +\infty \).

Proof:

Let \(\phi(t) \) be a solution of (36).

Then \(|\phi(t)|^2 = \phi^T(t)\phi(t) \)

\[
\frac{d}{dt}|\phi(t)|^2 = \phi^T(t)\phi(t) + \phi^T(t)A(t)\phi(t) + A^T(t)\phi^T(t)\phi(t)
\]

\[
= \phi^T(t)[A(t) + A^T(t)]\phi(t)
\]

Since \(M(t) \) is the largest eigen value of the symmetric matrix \(A(t) + A^T(t) \), we get

\[
|\phi^T(t)[A(t) + A^T(t)]\phi(t)| \leq M(t)|\phi(t)|^2
\]

Thus,

\[
0 \leq |\phi(t)|^2 \leq |\phi(t_0)|^2 \left(\exp \left[\int_{t_0}^{t} M(s)ds \right] \right) \to (38)
\]

By condition (37), the right side of (38) tends to zero.

Hence, \(\lim_{t \to +\infty} \phi(t) = 0 \).

Hence, the theorem.

4.2 Theorem:

Let \(m(t) \) be the smallest eigen value of \(A(t) + A^T(t) \). If

\[
\lim_{t \to +\infty} \int_{t_0}^{t} m(s)ds = +\infty \quad (t_0 > 0 \text{ is fixed}) \to (39)
\]

then every non-zero solution of (36) is unbounded as \(t \to +\infty \).

Proof: Let \(\phi(t) \) be a solution of (36).

As in the previous theorem, we have

\[
\frac{d}{dt}|\phi(t)|^2 = \phi^T(t)[A(t) + A^T(t)]\phi(t) \to (40)
\]

Since \(m(t) \) is the smallest eigen value of \((t) + A^T(t) \), we get

\[
\frac{d}{dt}|\phi(t)|^2 \geq m(t)|\phi(t)|^2
\]

Thus, \(\frac{d}{dt}\left\{ e^{-\int_{t_0}^{t} m(s)ds} |\phi(t)|^2 \right\} \geq 0 \)

\[
|\phi(t)|^2 \geq |\phi(t_0)|^2 e^{\int_{t_0}^{t} m(s)ds} \to (41)
\]

By condition (39), the right side of (41) tends to \(+\infty \) as \(t \to +\infty \).

\(\lim_{t \to +\infty} |\phi(t)| = +\infty \)

i.e., the solution \(\phi(t) \) is unbounded.

Hence, the theorem.

5. CONCLUSION

This paper is a work on the behaviour of solutions of linear systems, when the time is increased indefinitely; which is a kind of stability property. This provides an insight into the necessary steps to be taken to avoid unwanted phenomena or criteria in a system.

REFERENCES