On αsg closed sets in Topological spaces

A.Devika, R.Vani and K.Gomathi

Associate Professor, Department of Mathematics, PSG College of Arts & Science, Coimbatore, Tamilnadu.
Assistant Professor, Department of Mathematics with CA, PSG College of Arts & Science, Coimbatore, Tamilnadu.
Research Scholar, Department of Mathematics, PSG College of Arts & Science, Coimbatore, Tamilnadu.

Abstract

In this paper we introduce the new concept of αsg closed sets in topological spaces and a basic properties of αsg-closed sets were obtained.

Mathematics Subject Classification: 54A05

Keywords: αsg-closed sets and αsg-open sets.

1 Introduction

The aim of this paper is to introduce the new type of closed set called αsg closed set and to continue the study of αsg-closed sets thereby contributing new innovation and concept, in the field of topology through analytical as well as research works. The notion of αsg-closed sets and its different characterizations are given in this paper.

2 Preliminaries

A subset A of a topological space X is said to be open if $A \in \tau$. A subset A of a topological space X is said to be closed if the set $X - A$ is open. The interior of a subset A of a topological space X is defined as the union of all open sets contained in A. It is denoted by $int(A)$. The closure of a
On αsg closed sets in Topological spaces

A subset A of a topological space X is defined as the intersection of all closed sets containing A. It is denoted by $cl(A)$.

Throughout this paper (X, τ) represent the non-empty topological spaces on which no separation axioms are assumed, unless otherwise mentioned. Let $A \subseteq X$, the closure of A and interior of A will be denoted by $cl(A)$ and $int(A)$ respectively.

Definitions 2.1.

1. A subset A of a space (X, τ) is said to be **semi open** [7] if $A \subseteq cl(int(A))$ and **semi closed** if $int(cl(A)) \subseteq A$.

2. A subset A of a space (X, τ) is said to be **α-open** [14] if $A \subseteq int(cl(int(A)))$ and **α-closed** if $cl(int(cl(A))) \subseteq A$.

3. A subset A of a space (X, τ) is said to be **semi pre-open** [1] if $A \subseteq cl(int(cl(A)))$ and **semi pre-closed** if $int(cl(int(A))) \subseteq A$.

4. A subset A of a space (X, τ) is said to be **regular-open** [17] if $A = int(cl(A))$ and **regular-closed** if $A = cl(int(A))$.

5. A subset A of a space (X, τ) is said to be **pre-open** [12] if $A \subseteq int(cl(A))$ and **pre-closed** if $cl(int(A)) \subseteq A$.

The complement of a semi-open (resp.pre-open, α-open) set is called **semi-closed** (resp.pre-closed, α-closed). The intersection of all semi-closed (resp.pre-closed, α-closed) sets containing A is called the **semi-closure** (resp.pre-closure, α-closure) of A and is denoted by $scl(A)$ (resp. $pcl(A)$, $\alpha-cl(A)$) . The union of all semi-open (resp.pre-open, α-open) sets contained in A is called the **semi-interior** (resp.pre-interior, α-interior) of A and is denoted by $sint(A)$ (resp. $pint(A)$, $\alpha-int(A)$). The family of all semi-open (resp.pre-open, α-open) sets is denoted by $SO(X)$ (resp. $PO(X)$, $\alpha-O(X)$). The family of all semi-closed (resp.pre-closed, α-closed) sets is denoted by $Scl(X)$ (resp. $Pcl(X)$, $\alpha-Cl(X)$).

Definitions 2.2.

1. A subset A of a space (X, τ) is called **generalized-closed set** [8] (briefly g-closed) if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ).

2. A subset A of a space (X, τ) is called **generalized semi-closed set** [2] (briefly gs-closed set) if $scl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ).

ISSN: 2231-5373 http://www.ijmttjournal.org Page 18
On αsg closed sets in Topological spaces

3. A subset A of a space (X, τ) is called semi-generalized closed set [3] (briefly sg-closed set) if $scl(A) \subseteq U$, whenever $A \subseteq U$ and U is semi-open in (X, τ).

4. A subset A of a space (X, τ) is called α generalized-closed set [10] (briefly αg-closed) if $\alpha(cl(A)) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ).

5. A subset A of a space (X, τ) is called generalized α-closed set [9] (briefly go-closed) if $\alpha(cl(A)) \subseteq U$, whenever $A \subseteq U$ and U is α-open in (X, τ).

6. A subset A of a space (X, τ) is called generalized pre-closed set [11] (briefly gp-closed) if $pcl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ).

7. A subset A of a space (X, τ) is called generalized semi-pre closed set [4] (briefly gsp-closed) if $spcl(A) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ).

8. A subset A of a space (X, τ) is called semi weekly generalized-closed set [13] (briefly swg-closed) if $cl(int(A)) \subseteq U$, whenever $A \subseteq U$ and U is semi-open in (X, τ).

9. A subset A of a space (X, τ) is called star generalized-closed set [20] (briefly *g-closed) if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is g-open in (X, τ).

10. A subset A of a space (X, τ) is called weekly-closed set [18] (briefly w-closed) if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is semi-open in (X, τ).

11. A subset A of a space (X, τ) is called generalized-closed set [19] (briefly \hat{g}-closed) if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is semi-open in (X, τ).

12. A subset A of a space (X, τ) is called weekly generalized-closed set [13] (briefly wg-closed) if $cl(int(A)) \subseteq U$, whenever $A \subseteq U$ and U is open in (X, τ).

13. A subset A of a space (X, τ) is called π generalized-closed set [5] (briefly πg-closed) if $cl(A) \subseteq U$, whenever $A \subseteq U$ and U is π-open in (X, τ).

14. A subset A of a space (X, τ) is called π generalized α-closed set [6] (briefly πga-closed) if $acl(A) \subseteq U$, whenever $A \subseteq U$ and U is π-open in (X, τ).
On αsg closed sets in Topological spaces

15. A subset A of a space (X, τ) is called a **generalized-closed set** [16] (briefly mg-closed) if $cl\left(int\left(A\right)\right) \subseteq U$, whenever $A \subseteq U$ and U is g-open in (X, τ).

16. A subset A of a space (X, τ) is called a **generalized-closed set** [15] (briefly \tilde{g}-closed) if $cl\left(A\right) \subseteq U$, whenever $A \subseteq U$ and U is \tilde{g}-open in (X, τ).

3 αsg-Closed sets in Topological Spaces

In this section the notion of a new class of sets called αsg-closed sets in topological spaces is introduced and their properties were studied.

Definition 3.1 A subset A of space (X, τ) is called **αsg-closed** if $int\left(scl\left(A\right)\right) \subseteq U$, whenever $A \subseteq U$ and U is α-open in X.

The family of all αsg-closed subsets of the space X is denoted by $\alpha SGC(X)$.

Definition 3.2 The intersection of all αsg-closed sets containing a set A is called **αsg-closure** of A and is denoted by $\alpha sg\text{-}cl(A)$.

A set A is αsg-closed set if and only if $\alpha sg\text{-}cl(A) = A$.

Definition 3.3 A subset A in X is called **αsg-open** in X if A^c is αsg-closed in X.

The family of a αsg-open sets is denoted by $\alpha SGO(X)$.

Definition 3.4 The union of all αsg-open sets containing a set A is called **αsg-interior** of A and is denoted by $\alpha sg\text{-}Int(A)$.

A set A is αsg-open set if and only if $\alpha sg\text{-}Int(A) = A$.

Theorem 3.5 Every closed set is a αsg-closed set.

Proof: Let A be a closed set in X. Such that $A \subseteq U$, U is α-open. Since A is closed, $cl\left(A\right) = A$. For every subset A of X, $int\left(scl\left(A\right)\right) \subseteq cl\left(A\right) = A \subseteq U$ and so we have $int\left(scl\left(A\right)\right) \subseteq U$. Hence A is αsg-closed.

Remark 3.6 The converse of the above theorem need not be true as seen from the following example.

Example 3.7 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{a\}$ is αsg-closed but not a closed set of (X, τ).

Theorem 3.8 Every p-closed set is a αsg-closed set.
On αsg closed sets in Topological spaces

Proof: Let A be a p-closed set in X. Such that $A \subseteq U$, U is α-open. Since A is p-closed, $pcl (A) = A$. For every subset A of X, $int (scl (A)) \subseteq pcl (A) = A \subseteq U$ and so we have $int (scl (A)) \subseteq U$. Hence A is αsg-closed.

Remark 3.9 The converse of the above theorem need not be true as seen from the following example.

Example 3.10 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Then $A = \{a\}$ is αsg-closed but not a p-closed set of (X, τ).

Theorem 3.11 Every α closed set is a αsg-closed set.

Proof: Let A be a α-closed set in X. Such that $A \subseteq U$, U is α-open. Since A is α-closed, $\alpha cl (A) \subseteq A$. For every subset A of X, $int (scl (A)) \subseteq \alphacl (A) \subseteq A \subseteq U$ and so we have $int (scl (A)) \subseteq U$. Hence A is αsg-closed.

Remark 3.12 The converse of the above theorem need not be true as seen from the following example.

Example 3.13 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{b\}$ is αsg-closed but not α closed set of (X, τ).

Theorem 3.14 Every r-closed set is a αsg-closed set.

Proof: Let A be a r-closed set in X. Such that $A \subseteq U$, U is α-open. Since A is r-closed, $rcl (A) \subseteq A$. For every subset A of X, $int (scl (A)) \subseteq rcl (A) \subseteq A \subseteq U$ and so we have $int (scl (A)) \subseteq U$. Hence A is αsg-closed.

Remark 3.15 The converse of the above theorem need not be true as seen from the following example.

Example 3.16 Let $X = \{a, b, c, d, e\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{c, d\}, \{a, b, c, d\}\}$. Then $A = \{b, c, e\}$ is αsg-closed but not a r-closed set of (X, τ).

Theorem 3.17 Every $g\alpha$ closed set is a αsg-closed set.

Proof: Let A be a $g\alpha$-closed set in X. Such that $A \subseteq U$, U is α-open. Since A is $g\alpha$-closed, $gcl (A) \subseteq A$. For every subset A of X, $int (scl (A)) \subseteq gcl (A) \subseteq A \subseteq U$ and so we have $int (scl (A)) \subseteq U$. Hence A is αsg-closed.

Remark 3.18 The converse of the above theorem need not be true as seen from the following example.

Example 3.19 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{b\}$ is αsg-closed but not $g\alpha$ closed set of (X, τ).
On αsg closed sets in Topological spaces

Theorem 3.20 Every g closed set is a αsg-closed set.

Proof: Let A be a g-closed set in X. Such that $A \subseteq U$, U is α-open. Since A is g-closed, $\text{cl}(A) \subseteq A$. For every subset A of X, $\text{int}(\text{scl}(A)) \subseteq \text{cl}(A) \subseteq A \subseteq U$ and so we have $\text{int}(\text{scl}(A)) \subseteq U$. Hence A is αsg-closed.

Remark 3.21 The converse of the above theorem need not be true as seen from the following example.

Example 3.22 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Then $A = \{a, c\}$ is αsg-closed but not g-closed set of (X, τ).

Theorem 3.23 Every αg closed set is a αsg-closed set.

Proof: Let A be a αg-closed set in X. Such that $A \subseteq U$, U is α-open. Since A is αg-closed, $\alpha\text{cl}(A) \subseteq A$. For every subset A of X, $\text{int}(\text{scl}(A)) \subseteq \alpha\text{cl}(A) \subseteq A \subseteq U$ and we have $\text{int}(\text{scl}(A)) \subseteq U$. Hence A is αsg-closed.

Remark 3.24 The converse of the above theorem need not be true as seen from the following example.

Example 3.25 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Then $A = \{a, d\}$ is αsg-closed but not αg closed set of (X, τ).

Theorem 3.26 Every *g-closed set is a αsg-closed set.

Proof: Let A be a *g-closed set in X. Such that $A \subseteq U$, U is α-open. Since A is *g-closed, $\text{cl}(A) \subseteq A$. For every subset A of X, $\text{int}(\text{scl}(A)) \subseteq \text{cl}(A) \subseteq A \subseteq U$ and so we have $\text{int}(\text{scl}(A)) \subseteq U$. Hence A is αsg-closed.

Remark 3.27 The converse of the above theorem need not be true as seen from the following example.

Example 3.28 Let $X = \{a, b, c\}$ with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$. Then $A = \{a\}$ is αsg-closed but not a *g-closed set of (X, τ).

Theorem 3.29 Every w-closed set is a αsg-closed set.

Proof: Let A be a w-closed set in X. Such that $A \subseteq U$, U is α-open. Since A is w-closed, $\text{cl}(A) \subseteq A$. For every subset A of X, $\text{int}(\text{scl}(A)) \subseteq \text{cl}(A) \subseteq A \subseteq U$ and so we have $\text{int}(\text{scl}(A)) \subseteq U$. Hence A is αsg-closed.

Remark 3.30 The converse of the above theorem need not be true as seen from the following example.
On αsg closed sets in Topological spaces

Example 3.31 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Then $A = \{a, c\}$ is αsg-closed but not a w-closed set of (X, τ).

Theorem 3.32 Every swg-closed set is a αsg-closed set.

Proof: Let A be a swg-closed set in X. Such that $A \subseteq U$, U is α-open. Since A is swg-closed, $\text{cl}(\text{int}(A)) \subseteq A$. For every subset A of X, $\text{int}(\text{scl}(A)) \subseteq \text{cl}(\text{int}(A)) \subseteq A \subseteq U$ and so we have $\text{int}(\text{scl}(A)) \subseteq U$. Hence A is αsg-closed.

Remark 3.33 The converse of the above theorem need not be true as seen from the following example.

Example 3.34 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Then $A = \{a\}$ is αsg-closed but not a swg-closed set of (X, τ).

Theorem 3.35 The union of two αsg-closed subsets of X is also αsg-closed set in X.

Proof: Assume that P and Q are p#g-closed set in X. Let $P \cup Q \subseteq U$ and U be α-open in X. Since $P \subseteq U$ and $Q \subseteq U$, U is α-open. Then $\text{int}(\text{scl}(P)) \subseteq U$ and $\text{int}(\text{scl}(Q)) \subseteq U$ and we have $\text{int}(\text{scl}(P \cup Q)) \subseteq \text{int}(\text{scl}(P)) \cup \text{int}(\text{scl}(Q)) \subseteq U$. Since U is α-open. Hence $P \cup Q$ is αsg-closed set in X.

Remark 3.36 The intersection of two αsg-closed sets in X is generally not αsg-closed set in X.

Example 3.37 Let $X = \{a, b, c, d\}$ with topology $\tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. If $P = \{b, c\}$ and $Q = \{b, d\}$, then P and Q are αsg-closed sets in X, but $P \cup Q = \{b\}$ is not a αsg-closed set of X.

Theorem 3.38 Every ġ-closed set is a αsg-closed set.

Proof follows from the definition, since every α-open set is semi-open.

Example 3.39 In example (3.10), the set $\{b, c\}$ is αsg-closed but not a ġ-closed set of (X, τ).

Theorem 3.40 Every wg-closed set is a αsg-closed set.

Proof follows from the definition, since every α-open set is open.

Example 3.41 In example (3.10), the set $\{a, d\}$ is αsg-closed but not a wg-closed set of (X, τ).

ISSN: 2231-5373 http://www.ijmttjournal.org Page 23
On αsg closed sets in Topological spaces

Theorem 3.42 Every πg-closed set is a αsg-closed set.

Proof follows from the definition, since every α-open set is π-open.

Example 3.43 In example (3.13), the set $\{b\}$ is αsg-closed but not a πg-closed set of (X, τ).

Theorem 3.44 Every $\pi g\alpha$-closed set is a αsg-closed set.

Proof follows from the definition, since every α-open set is π-open.

Example 3.45 In example (3.13), the set $\{a\}$ is αsg-closed but not a $\pi g\alpha$-closed set of (X, τ).

Theorem 3.46 Every mg-closed set is a αsg-closed set.

Proof follows from the definition, since every α-open set is g-open.

Example 3.47 In example (3.16), the set $\{b, c, e\}$ is αsg-closed but not a mg-closed set of (X, τ).

Theorem 3.48 Every gp-closed set is a αsg-closed set.

Proof follows from the definition, since every α-open set is open.

Example 3.49 In example (3.10), the set $\{b\}$ is αsg-closed but not a gp-closed set of (X, τ).

So the class of αsg-closed sets properly contain the class of \tilde{g}-closed set, wg-closed set, $\pi g\alpha$-closed set, πg-closed set, gp-closed set and mg-closed sets.

Remark 3.50 The concept of αsg-closed set is independent of the following classes of sets namely gs-closed set and \tilde{g}-closed set.

Example 3.51 Consider the topological space $X = \{a, b, c, d, e\}$, with topology $\tau = \{X, \phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}\}$. In this space, the set $\{a, b\}$ is αsg-closed set but not gs-closed set and the set $\{a, c\}$ is gs-closed set but not αsg-closed set.

Example 3.52 Consider the topological space $X = \{a, b, c, d\}$, with topology $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b, c\}, \{a, b, d\}\}$. In this space, the set $\{a\}$ is αsg-closed set but not \tilde{g}-closed set and the set $\{a, b\}$ is \tilde{g}-closed set but not αsg-closed set.

Remark 3.53 Figure 3.1 gives the implication relations of αsg-closed sets based on the above results.
On αsg closed sets in Topological spaces

Figure 3.1 Implication of αsg-closed set

Where

\rightarrow $\sec B$ represents A implies B
\leftarrow $\sec A$ B represents A does not implies B
\leftrightarrow $\sec A$ $\sec B$ represents B does not implies A

Theorem 3.54 For $x \in X$, the set $X - \{x\}$ is αsg-closed or α-open.

Proof: Suppose $X - \{x\}$ is not α-open. Then X is the only α-open set containing $X - \{x\}$. $\Rightarrow \text{int}(\text{scl}(X - \{x\})) \subseteq X$. Then $X - \{x\}$ is αsg-closed in X

Theorem 3.55 Let $A \subseteq Y \subseteq X$ and suppose that A is αsg-closed in X, then A is αsg-closed relative to Y.

Proof: Given that $A \subseteq Y \subseteq X$ and A is αsg-closed in X. To show that A is αsg-closed relative to Y. where U is α-open in X. Since A is αsg-closed, $A \subseteq U$, implies that $\text{int}(\text{scl}(A)) \subseteq U$, It follows that $Y \cap \text{int}(\text{scl}(A)) \subseteq Y \cap U$. Thus A is αsg-closed relative to Y.

Theorem 3.56 If A is αsg-closed and $A \subseteq B \subseteq \text{int}(\text{scl}(A))$. Then B is αsg-closed.

Proof: Let U be a α-open set of X, such that $B \subseteq U$. Then $A \subseteq U$ and since A is αsg-closed, we have, $\text{int}(\text{scl}(A)) \subseteq U$ Now, $\text{int}(\text{scl}(B)) \subseteq \text{int}(\text{scl}(\text{int}(\text{scl}(A)))) = \text{int}(\text{scl}(A)) \subseteq U$ Hence B is αsg-closed set.

Theorem 3.57 If a subset A of (X, τ) is α-open and αsg-closed, then A is semi-closed in (X, τ).

ISSN: 2231-5373 http://www.ijmttjournal.org Page 25
On αsg closed sets in Topological spaces

Proof: If a subset A of (X, τ) is α-open and αsg-closed. Then $\text{int}(\text{scl}(A)) \subseteq U \subseteq A$. Hence A is semi-closed in (X, τ).

Theorem 3.58 If a set A is αsg-closed, then $\text{int}(\text{scl}(A)) - A$ contains no non-empty α-closed set.

Proof: Let F be a non-empty α-closed set such that $F \subseteq \text{int}(\text{scl}(A)) - A$, then $F \subseteq \text{int}(\text{scl}(A))$ and $A \subseteq X - F$, we have $\text{int}(\text{scl}(A)) \subseteq \text{int}(X - F)$. \[\Rightarrow \text{int}(\text{scl}(A)) \subseteq X - \text{cl}(A) \Rightarrow \text{cl}(A) \subseteq X - \text{int}(\text{scl}(A)).\] Therefore $F \subseteq \text{int}(\text{scl}(A)) \cap (X - \text{int}(\text{scl}(A))) = \emptyset$. Hence $\text{int}(\text{scl}(A)) - A$ contains no non-empty α-closed set.

Theorem 3.59 Let A be α-closed in (X, τ), then A is semi-closed iff $\text{int}(\text{scl}(A)) - A$ is α-closed.

Proof: Necessity: Let A be semi-closed, then $\text{scl}(A) = A$. Hence $\text{int}(\text{scl}(A)) - A = \{\phi\}$. Which is α-closed.

Sufficiency: Suppose $\text{int}(\text{scl}(A)) - A$ is α-closed. Since A is αsg-closed by theorem(), $\text{int}(\text{scl}(A)) - A = \{\phi\}$. Then $\text{int}(\text{scl}(A)) = A$. This means that A is semi-closed.

References

On \(\alpha \)-\(sg \) closed sets in Topological spaces

