On the Construction of Weighing Matrices from Coherent Configuration

1 P.K. Manjhi, 2 Arjun Kumar

1Assistant Professor, University, Department of Mathematics, Vinoba Bhave University, Hazaribag
2Research Scholar, University, Department of Mathematics, Vinoba Bhave University, Hazaribag

Abstract: In this paper we forward two methods of construction of conference matrices of order 6 by suitable combinations of adjacency matrices of suitable coherent configuration.

Key words: Coherent configuration, weighing matrix, conference matrices.

1. Introduction: We begin with the following definition:

1.1. WEIGHING MATRICES: A weighing matrix \(W \) of order \(n \) and weight \(w \) is an \(n \times n \) matrix with entries \((0, \pm 1)\), such that

\[
WW^T = wI_n,
\]

where \(W^T \) is the transpose of \(W \) and \(I_n \), is the identity matrix of order \(n \). A weighing matrix of order \(n \) and weight \(w \) is denoted by \(W(n, w) \).

(i) \(W(n, n) \) is a hadamard matrix.

(ii) \(W(n, n - 1), n \) even with zeros on the diagonal such that \(WW^T = (n - 1)I_n \) is conference matrix.

(iii) If \(n \equiv 2 \mod 4 \), such that \(W = W^T \) is symmetric conference matrix.

(Vide: [1] and [5])

Example:

\[
W(6,5) = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & -1 & -1 & 1 \\
1 & 1 & 0 & 1 & -1 & -1 \\
1 & -1 & 1 & 0 & 1 & -1 \\
1 & -1 & -1 & 1 & 0 & 1 \\
1 & 1 & -1 & -1 & 1 & 0
\end{bmatrix}
\]

(Vide: [5])

1.2. PROPERTIES OF WEIGHING MATRICES:

If \(W \) is a \(W(n, w) \) then:

(i) The rows of \(W \) are pairwise orthogonal. Similarly, the columns are pairwise orthogonal.

(ii) Each row and each column of \(W \) has exactly \(w \) non-zero elements.

(iii) \(W^T W = wI \), since the definition means that \(W^{-1} = w^{-1} W^T \) where \(W^{-1} \) is the inverse of \(W \).

(iv) If there is a \(W(n, p) \) then there is a symmetric \(W(n^2, p^2) \).

(v) For a weighing matrix \(W(n, n - 1) \) \(WW^T = (n - 1)I_n \), then \(\det W \equiv W(n) = (n - 1)^{n/2} \). (Vide: [1])

1.3. CONFERENCE MATRICES:

A conference matrix of order \(n \) is an \(n \times n \) matrix \(M \) with diagonal entries 0 and other entries \(\pm 1 \), which satisfies \(MM^T = (n - 1)I_n \).

Where : \(M^T \) is transpose of \(M \) and \(I_n \) is the identity matrix.
Examples: \[M = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & -1 & -1 & 1 \\ 1 & 1 & 0 & 1 & -1 & -1 \\ 1 & -1 & 1 & 0 & 1 & -1 \\ 1 & -1 & -1 & 1 & 0 & 1 \\ 1 & 1 & -1 & -1 & 1 & 0 \end{bmatrix} \]

(vide : [3])

1.4. SYMMETRIC CONFERENCE MATRICES:
A conference matrix \(M \) with entries \(0, 1, \text{and} -1 \) is called symmetric conference matrix if \(MM^T = MM^T = nI_n \)

Where: \(n \) is order of matrix, \(I_n \) is identity matrix and \(M^T \) is the transpose of \(M \).

(vide : [3]) Examples:

\[
M = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & -1 & 1 & 1 & -1 \\ 1 & -1 & 0 & -1 & 1 & 1 \\ 1 & 1 & -1 & 0 & 1 & -1 \\ 1 & 1 & 1 & -1 & 0 & 1 \\ 1 & -1 & 1 & 1 & -1 & 0 \end{bmatrix} \quad \text{and} \quad M = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & -1 & -1 & 1 \\ 1 & 1 & 0 & 1 & -1 & -1 \\ 1 & -1 & 1 & 0 & 1 & -1 \\ 1 & -1 & -1 & 1 & 0 & 1 \\ 1 & 1 & -1 & -1 & 1 & 0 \end{bmatrix}
\]

(vide : [3])

1.5. PROPERTIES OF SYMMETRIC CONFERENCE MATRICES AND CONFERENCE MATRICES:
Some important properties of Symmetric Conference matrices and conference matrices are given below:

1. The order of conference matrix is of the form \(4t + 2 \),
2. \(n - 1 \) where \(n \) is the order of a conference matrix , must be the sum of two squares;
3. If there is a conference matrix of order \(n \) then there is a symmetric conference matrix of order \(n \) with zero diagonal .The two forms are equivalent as one can be transformed into the other by
 (i) Interchanging rows (columns) or
 (ii) multiplying rows (columns) by -1;
4. A conference matrix is said to be normalized if it has first rows and columns all plus ones.
5. \(M^{-1} = nM^T \)

(vide : [3])

1.6. SKEW-CONFERENCE MATRIX:
A conference matrix \(M \) with entries 0, \text{and} \pm 1 \) is called skew symmetric matrix conference matrix if \(M^T = -M \)

Where: \(T \) denotes the matrix transpose.

(vide : [11])
\[M = \begin{bmatrix} 0 & 1 & 1 & -1 & 1 & -1 \\ -1 & 0 & 1 & 1 & -1 & 1 \\ -1 & -1 & 0 & 1 & 1 & -1 \\ 1 & -1 & -1 & 0 & 1 & 1 \\ -1 & 1 & -1 & 0 & 1 & 1 \\ 1 & 1 & 1 & -1 & -1 & 0 \end{bmatrix} \]

Example:

1. **COHERENT CONFIGURATION (CC):**

 Let \(X \) be a finite set. A coherent configuration on \(X \) is a set \(C = \{C_1, C_2, C_3, \ldots, C_m\} \) of binary relation on \(X \) (subsets of \(X \times X \)) satisfying the following four conditions:

 (i) 'C' is a partition of \(X \times X \) that is
 \[\bigcup_{i=1}^{m} C_i = X \times X \]

 (ii) There exist a sub set \(C_\alpha \) of \(C \) which is a partition of the diagonal \(D = \{(x, x) : x \in X\} \)

 (iii) For every relation \(C_j \in C \), its converse \(C_j' = \{(\beta, \alpha) : (\alpha, \beta) \in C_j\} \) is in \(C \) say \(C_j = C_j' \in C_k \)

 (iv) There exist integer \(P_{ij}^k \) for \(1 \leq i, j, k \leq m \) such that for any \((\alpha, \beta) \in C_k \) the number of points \(\gamma \in X \) such that \((\alpha, \gamma) \in C_i \) and \((\gamma, \beta) \in C_j \) is equal to \(P_{ij}^k \) (and in particular, is independent of the choice of \((\alpha, \beta) \in C_k \).

 That is we have
 \[P_{ij}^k = \left| C_i(\alpha) \cap C_j'(\beta) \right| \text{ for } (\alpha, \beta) \in C_k \]
 Where \(C(\alpha) = \{\beta \in X : (\alpha, \beta) \in C\} \).

C.C. is also defined by adjacency matrices of classes of \(C \). If \(A_1, A_2, \ldots, A_m \) are adjacency matrices of \(C_1, C_2, \ldots, C_m \) respectively then the axioms takes the following from

(i) \(A_1 + A_2 + \ldots + A_m = J \)

(ii) There exist a sub set of \(\{A_1, A_2, \ldots, A_m\} \) with sum \(I = \text{identity matrix} \);

(iii) Each elements of the set \(\{A_1, \ldots, A_m\} \) is closed under transposition ;

(iv) \(A_j A_j = \sum_{i=1}^{m} P_{ij}^k A_k \) where \(P_{ij}^k \) are non-negative integers.

Vide: Singh and Manjhi [8].

2. **MAIN WORK:**

 In this paper we construct two conference matrices each of orders 6 by suitable linear combination of coherent configurations.

2.1. **CONSTRUCTION OF SYMMETRIC CONFERENCE MATRIX OF ORDER 6:**

Consider \(X = \{1, 2, 3, 4, 5, 6\} \) and a partition \(C = \{C_1, C_2, C_3, C_4, C_5, C_6\} \) of \(X \times X \) where
\[C_1 = \{(i, i) : i = 1\}, \]
\[C_2 = \{(i, i) : i = 2, 3, 4, 5, 6\}, \]
\[C_3 = \{(i, i) : i = 2, 3, 4, 5, 6\}, \]
\[C_4 = \{(i, i) : i = 2, 3, 4, 5, 6\}, \]
\[C_5 = \{(2, i) : i = 3, 6\} \cup \{(3, i) : i = 2, 4\} \cup \{(4, i) : i = 3, 5\} \cup \{(5, i) : i = 4, 6\} \cup \{(6, i) : i = 2, 5\}, \]
\[C_6 = \{(2, i) : i = 4, 5\} \cup \{(3, i) : i = 5, 6\} \cup \{(4, i) : i = 2, 6\} \cup \{(5, i) : i = 2, 3\} \cup \{(6, i) : i = 3, 4\}. \]

Then adjacency matrices \(M_1, M_2, M_3, M_4, M_5 \) and \(M_6 \) of \(C_1, C_2, C_3, C_4, C_5 \) and \(C_6 \) respectively are given below:

\[
M_1 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
M_2 = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
M_3 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
M_4 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
M_5 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

\[
M_6 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0
\end{bmatrix}
\]

We see that

1. \(M_1 + M_2 + M_3 + M_4 + M_4 + M_1 = J_6 \)
2. \(M_1 + M_4 = I_6 \)
3. \(M'_1 = M_1, M'_2 = M_2, M'_3 = M_3, M'_4 = M_4, M'_5 = M_5, M'_6 = M_6 \)
4. We see the following calculations:

(i) \(M'_1^2 = M_1, M'_1M_2 = M_2, M'_1M_3 = 0, M'_1M_4 = 0, M'_1M_5 = 0, M'_1M_6 = 0 \)
(ii) \(M'_2^2 = 0, M'_2M_3 = 5M_1, M'_2M_4 = M_2, M'_2M_5 = 2M_2, M'_2M_6 = 2M_2 \)
(iii) \(M'_3^2 = 0, M'_3M_4 = 0, M'_3M_5 = 0, M'_3M_6 = 0 \)
(iv) \(M'_4^2 = M_4, M'_4M_5 = M_5, M'_4M_6 = M_6 \)
(v) \(M'_5^2 = 2M_4 + M_6, M'_5M_6 = M_5 + M_6 \)
(vi) \(M'_6^2 = 2M_4 + M_5 \)

Hence product of any two adjacency matrices is some linear combinations of adjacency matrices.

Thus the set \(C = \{C_1, C_2, C_3, C_4, C_5, C_6\} \) is a C.C.
Consider the matrix
\[M = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & -1 & -1 & 1 \\
1 & 1 & 0 & 1 & -1 & -1 \\
1 & -1 & 1 & 0 & 1 & -1 \\
1 & -1 & -1 & 1 & 0 & 1 \\
1 & 1 & -1 & -1 & 1 & 0
\end{bmatrix} \]

\[M = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & -1 & -1 & 1 \\
1 & 1 & 0 & 1 & -1 & -1 \\
1 & -1 & 1 & 0 & 1 & -1 \\
1 & -1 & -1 & 1 & 0 & 1 \\
1 & 1 & -1 & -1 & 1 & 0
\end{bmatrix} \]

\[MM^T = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & -1 & -1 & 1 \\
1 & 1 & 0 & 1 & -1 & -1 \\
1 & -1 & 1 & 0 & 1 & -1 \\
1 & -1 & -1 & 1 & 0 & 1 \\
1 & 1 & -1 & -1 & 1 & 0
\end{bmatrix} \]

\[= 5I_6 = (6-1)I_6 \]

\[\Rightarrow MM^T = (6-1)I_6 \]

\[M^TM = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & -1 & -1 & 1 \\
1 & 1 & 0 & 1 & -1 & -1 \\
1 & -1 & 1 & 0 & 1 & -1 \\
1 & -1 & -1 & 1 & 0 & 1 \\
1 & 1 & -1 & -1 & 1 & 0
\end{bmatrix} \]

\[= 5I_6 = (6-1)I_6 \]

\[\Rightarrow M^TM = (6-1)I_6 \]

Thus \(MM^T = M^TM = (6-1)I_6 \)

Which show that \(M \) is a symmetric conference matrix of order 6.

2.2. Consider \(X = \{1,2,3,4,5,6\} \) and a partition \(C = \{C_1, C_2, C_3, C_4, C_5, C_6\} \) of \(X \times X \) where

\(C_1 = \{(i, i) : i = 1\}, \)

\(C_2 = \{(1, i) : i = 2,3,4,5,6\}, \)

\(C_3 = \{(i, 1) : i = 2,3,4,5,6\}, \)

\(C_4 = \{(i, i) : i = 2,3,4,5,6\} \)

\(C_5 = \{(2, i) : i = 4,5\} \cup \{(3, i) : i = 5,6\} \cup \{(4, i) : i = 2,6\} \cup \{(5, i) : i = 2,3\} \cup \{(6, i) : i = 2,5\} \)

\(C_6 = \{(2, i) : i = 3,6\} \cup \{(3, i) : i = 2,4\} \cup \{(4, i) : i = 3,5\} \cup \{(5, i) : i = 4,6\} \cup \{(6, i) : i = 2,5\} \)

Then adjacency matrices \(M_1, M_2, M_3, M_4, M_5, \text{and} M_6 \) of \(C_1, C_2, C_3, C_4, C_5 \) and \(C_6 \) respectively are given below:
Consider the matrix:

\[
M = \begin{bmatrix}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & -1 & 1 & 1 \\
1 & -1 & 0 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 \\
1 & -1 & 1 & 0 & 1 \\
\end{bmatrix}
\]

Also, we see that

1. \(M_1 + M_2 + M_3 + M_4 + M_5 + M_6 = J_6 \)
2. \(M_1 + M_4 = I_6 \)
3. \(M'_1 = M_1, M'_2 = M_2, M'_3 = M_3, M'_4 = M_4, M'_5 = M_5, M'_6 = M_6 \)

We see that the following calculations:

(i) \(M_1^2 = M_1, M_2 = M_2 + 5M_1, M_3 = M_3, M_4 = M_4, M_5 = M_5, M_6 = M_6 \)
(ii) \(M_2^2 = 0, M_2M_3 = 5M_1, M_2M_4 = M_2, M_2M_5 = 2M_2, M_2M_6 = 2M_2 \)
(iii) \(M_3^2 = 0, M_3M_4 = 0, M_3M_5 = 0, M_3M_6 = 0 \)
(iv) \(M_4^2 = M_4, M_4M_5 = M_5, M_4M_6 = M_6 \)
(v) \(M_5^2 = 2M_4 + M_6, M_5M_6 = M_5 + M_6 \)
(vi) \(M_6^2 = 2M_4 + M_5 \)

Hence, product of any two adjacency matrices is some linear combinations of adjacency matrices.

Thus, the set \(C = \{C_1, C_2, C_3, C_4, C_5, C_6\} \) is a C.C. Consider the matrix \(M = 0.M_1 + 1.M_2 + 1.M_3 + 0.M_4 + 1.M_5 + (-1).M_6 \).
Another symmetric conference matrix of order 6.

\[\begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & -1 & 1 & 1 & -1 \\
1 & -1 & 0 & -1 & 1 & 1 \\
-1 & 1 & -1 & 0 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & 0 \\
1 & -1 & 1 & 1 & -1 & 0 \\
\end{pmatrix} \]

\[\begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & -1 & 1 & 1 & -1 \\
1 & -1 & 0 & -1 & 1 & 1 \\
-1 & 1 & -1 & 0 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & 0 \\
1 & -1 & 1 & 1 & -1 & 0 \\
\end{pmatrix} \]

\[MM^T = \begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & -1 & 1 & 1 & -1 \\
1 & -1 & 0 & -1 & 1 & 1 \\
-1 & 1 & -1 & 0 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & 0 \\
1 & -1 & 1 & 1 & -1 & 0 \\
\end{pmatrix} \]

\[= 5I_6 = (6 - 1)I_6 \]

\[MM^T = \begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & -1 & 1 & 1 & -1 \\
1 & -1 & 0 & -1 & 1 & 1 \\
-1 & 1 & -1 & 0 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & 0 \\
1 & -1 & 1 & 1 & -1 & 0 \\
\end{pmatrix} \]

\[= 5I_6 = (6 - 1)I_6 \]

\[\Rightarrow MM^T = (6 - 1)I_6 \]

\[M^T M = \begin{pmatrix}
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & -1 & 1 & 1 & -1 \\
1 & -1 & 0 & -1 & 1 & 1 \\
-1 & 1 & -1 & 0 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & 0 \\
1 & -1 & 1 & 1 & -1 & 0 \\
\end{pmatrix} \]

\[= 5I_6 = (6 - 1)I_6 \]

\[\Rightarrow M^T M = (6 - 1)I_6 \]

Thus \(MM^T = M^T M = (6 - 1)I_6 \)

Which show that \(M \) is another symmetric conference matrix of order 6.

References

[9] N. A. Balonin and Jennifer Seberry, Conference Matrices with Two Borders and Four circulants

