Linear Ideals and Linear Grills in Topological Vector Spaces

Tresa Mary Chacko #1, Susha D. #2

#1Assistant Professor, Department of Mathematics, Christian College, Chenganur, Kerala, India
#2Associate Professor, Department of Mathematics, Catholicate College, Pathanamthitta, Kerala, India

Abstract—In this paper we introduce the concepts of linear grills and linear ideals in topological vector spaces. We prove that the closure operators obtained from them are both Linear Čech closure operators under certain conditions. Also we introduce two new operators based on linear grills and linear ideals.

Keywords—Linear Čech closure spaces, semi open sets, linear grills, linear ideals.

I. INTRODUCTION

Closure spaces were introduced by E. Čech [1] and then studied by many authors like Jeeranunt Khampaladee [8], Chawalit Boonpok [2], David Niel Roth [4] etc. Čech closure spaces is a generalisation of the concept of topological spaces. The first to introduce the concept of grill topological spaces was Choquet [3] in 1947. Ideals in topological spaces have been considered since 1930. D. S. Jankovic and T. R. Hamlett [6] defined a topology obtained as an associated structure on a topological space (X, τ) induced by an ideal on X. B. Roy and M. N. Mukherjee[13] defined a topology obtained as an associated structure on a topological space (X, τ) induced by a grill on X. Later, A. Kandil et. al.[7] proved that the topological space induced by an ideal and the topological space which is induced by a grill are equivalent. Also A. A. Nasef and A. A. Azzam [12] defined and studied new operators Φ^\ast and Ψ^\ast with grill. We Tresa M. C. and Susha D. [15] introduced the concept of Linear Čech closure spaces and studied its fundamental properties. In this paper, we study the notion of linear grills and linear ideals and also we introduced two new operators on topological vector spaces.

In Section II we quote the necessary preliminaries about Linear Čech closure spaces, grills, ideals, topologies derived from grills and ideals etc. Section III deals with the concept of linear grills and the topology derived from a linear grill. In Section IV we proved the linearity of the closure operator obtained from a linear ideal. Section V contains the proof of the equivalence of the topologies obtained from linear grills and linear ideals. In Section VI we introduced some new operators based on linear grills and linear ideals.

II. PRELIMINARIES

Definition 2.1[3] A collection G of nonempty subsets of a set X is called a grill if
1. $A \in G$ and $A \subseteq B \Rightarrow B \in G$
2. $A \cup B \in G \Rightarrow A \in G$ or $B \in G$

Let G be a grill on a topological space (X, τ). Consider the operator $\Phi_G: \wp(X) \rightarrow \wp(X)$ given by $\Phi_G(A) = \{ x \in X : U \cap A \subseteq G, \forall U \in \tau(x) \}$, where $\tau(x) = \{ U \in \tau | x \in U \}, \forall A \in \wp(X)$. Then the map $\Psi_G: \wp(X) \rightarrow \wp(X)$ given by $\Psi_G(A) = A \cup \Phi_G(A)$ is a Kuratowski closure operator and hence induces a topology $\tau_G = \{ G \subseteq X : \Psi_G(X - G) = X - G \}$, strictly finer than τ.

Definition 2.2 Let (X, τ, G) be a grill topological space. A subset A of a grill topological space (X, τ, G) is τ_G-closed [13] (resp. τ_G-dense in itself [11], τ_G-perfect), if $\Psi_G(A) = A$ or equivalently if $\Phi_G(A) = A = \Phi_G(A)$.

Definition 2.3[9] A nonempty collection I of subsets of a nonempty set X is said to be an ideal on X if
1. $A \in I$ and $B \subseteq A \Rightarrow B \in I$
2. $A \in I$ and $B \subseteq A \Rightarrow A \cup B \in I$

Given a topological space (X, τ) with an ideal I on X, a set operator $(\cdot)\ast: \wp(X) \rightarrow \wp(X)$ called a local function of a subset A with respect to τ and I is defined as $A\ast(I, \tau) = \{ x \in X | U \cap A \subseteq I, \forall U \in \tau(x) \}$, where $\tau(x) = \{ U \in \tau | x \in U \}, \forall A \in \wp(X)$. Then the map $cl\ast(A) = A \cup A\ast$ is a Kuratowski closure operator and hence induces a topology $\tau\ast(I, \tau) = \{ G \subseteq X : cl\ast(X - G) = X - G \}$, strictly finer than τ.

Definition 2.4 Let (X, τ, I) be an ideal topological space. A subset A of an ideal topological space (X, τ, I) is τ^\ast-closed [6] (resp. τ^\ast-dense in itself [5], τ^\ast-perfect), if $A^\ast \subseteq A$ (resp. $A \subseteq A^\ast, A = A^\ast$).

Definition 2.5.[1] A function $c: \wp(X) \rightarrow \wp(X)$ is called a Čech closure operator for X if
1. $c(\emptyset) = \emptyset$
2. $A \subseteq c(A)$
3. \(c(A \cup B) = c(A) \cup c(B), \forall A, B \subseteq X \). Then \((X, c)\) is called Čech closure space simply closure space. If in addition
4. \(c(c(A)) = c(A), \forall A \subseteq X \), then the space \((X, c)\) is called a Kuratowski (topological) space.

If further
5. For any family of subsets of \(X\), \(\{A_i\}_{(i)}\), \(c(\bigcup_{i} A_i) = \bigcup_{i} c(A_i)\), the space is called a total closure space.

Definition 2.6. [1] A subset \(A\) of a closure space \((X, c)\) will be closed if \(c(A) = A\) and open if its complement is closed, i.e. if \(c(X - A) = X - A\).

Definition 2.7. [1] If \((X, c)\) is a closure space, we denote the associated topology on \(X\) by \(t\). i.e. \(t = \{A^c : c(A) = A\}\)

Theorem 2.1. Let \((X, c)\) be a closure space and \(cl\) be the closure operator of the associated topology. Then \(cl \subseteq c\ i.e. c(A) \subseteq cl(A), \forall A \subseteq X\).

Definition 2.8. [14] A map \(f : (X, c) \to (Y, c')\) is said to be a \(c - c'\) morphism or just a morphism if \(f(c(A)) \subseteq c'((f(A)))\).

Result: [1]
1. A mapping \(f\) of a closure space \((X, c)\) onto another one \((Y, c')\) is a \(c - c'\) morphism at a point \(x \in X\), if and only if the inverse image, \(f^{-1}(V)\) of each neighbourhood \(V\) of \(f(x)\) is a neighbourhood of \(x\).
2. If \(f\) is a \(c - c'\) morphism of a space \((X, c)\) into a space \((Y, c')\), then the inverse image of each open subset of \(Y\) is an open subset of \(X\).
3. If \(f : (X, c) \to (Y, c')\) is a morphism, then \(f : X \times 0 \to (Y, t)\) is continuous.

Definition 2.9. [14] A homeomorphism is a bijective mapping \(f\) such that both \(f\) and \(f^{-1}\) are morphisms.

Definition 2.10. [10] A subset \(A\) of a topological space \((X, τ)\) is called semi-open set if \(A \subseteq cl(\int A)\), where \(A \subseteq X\) and the family of all semi-open sets of \((X, τ)\) is denoted by \(SO(X, τ)\).

Definition 2.11. [15] Let \(V\) be a vector space and \(c\) be a closure operator on \(V\) such that
1. \(c(A) + c(B) \subseteq c(A + B)\)
2. \(c(λ A) \subseteq c(λ A)\). Then \(c\) is called a linear Čech closure operator and \((V, c)\) is called a linear Čech closure space (LČCS).

Proposition 2.1. [15] Let \(V\) be a vector space and \(c\) be a closure operator on \(V\). Then \((V, c)\) is a linear Čech closure space if and only if + : \((V \times V, c \times c) \to (V, c)\) and \(λ : (V, c) \to (V, c)\), \(∀A \in K\) are morphisms.

Proposition 2.2. [15] Let \((V, c)\) be a LČCS. Then the map \(T_c : (V, c) \to (V, c)\) given by \(T_c(x) = a + x\) and \(M_λ : (V, c) \to (V, c)\) given by \(M_λ(x) = λx\) are homeomorphisms.

Proposition 2.3. The topology obtained from a LČCS is a linear topology.

Result: If \((X, c)\) is \(T_1\) and finitely generated, it is the discrete closure space.

Proposition 2.4. Every LČCS is \(T_1\) and hence Hausdorff.

Proof: Let 0 be the identity element and \(x\) be any other element of the vector space.
\(c(0) + c(0) = c(0 + 0) = c(0)\).
This shows that \(c(0) = \{0\}\).
Then \(c(x) + c(-x) \subseteq c(x + (-x)) = c(0) = \{0\}\).
If \(y(\neq x) \in V, y + (-x) ≠ 0\).
Hence \(y(\neq x) \notin \{x\}\).
We have seen in the literature that every \(T_1\) linear topological space is Hausdorff.

III. LINEAR GRILLS

Definition 3.1. A grill \(G\) on a topological space \((V, τ)\) is called a linear grill if
1. \(A, B \in G \Rightarrow A + B \in G\)
2. \(\lambda A \in G \Rightarrow \lambda A \in G, \forall \text{ scalars} \lambda\).

Proposition 3.1. Let \(A, B\) be any two sets in a topological vector space with a linear grill in it then for the corresponding function \(Φ_G, Φ_G(A) = Φ_G(A + B)\). Also \(λΦ_G(A) = Φ_G(λA)\).

Proof: Let \(x \in Φ_G(A)\) and \(y \in Φ_G(B)\).
Then for every \(U \in τ(x), A \cap U \in G\) and for every \(V \in τ(y), B \cap V \in G\).
Since \(U \in τ(x), V \in τ(y) \exists U_0, V_0 \in τ(0)\) such that \(U = x + U_0\) and \(V = y + V_0\).
Then \(U_0 + V_0 \in τ(0)\) and
\(U + V = x + U_0 + y + V_0 = x + y + U_0 + V_0 \Rightarrow U + V \in τ(x + y)\).
Let \(W \in τ(x + y)\). Then \(∃ W_0 \in τ(0)\) such that \(W = x + y + W_0\).
Since addition is continuous and \(0 + 0 = 0, \exists U_0\) and \(V_0 \in τ(0)\) such that \(W_0 = U_0 + V_0\).
Thus corresponding to any two neighbourhoods \(U\) and \(V\) of \(x\) and \(y\) respectively, there is a neighbourhood of \(x + y\) and vice versa.
Now \(A \cap U \in G \text{ and } B \cap V \in G \Rightarrow (A \cap U) + (B \cap V) \in G\), since \(G\) is closed under addition and \((A \cap U) + (B \cap V) \subseteq (A + B) \cap (U + V)\).
Now we have to show that \(\lambda \Phi^*(A) \subseteq \Phi(\lambda A) \).

Let \(x \in \Phi(\lambda A) \). Then \(\lambda x \in \lambda \Phi(A) \).

We have to show that \(\forall V \subseteq \tau(x), \lambda A \cap V \subseteq G \), so that \(\lambda x \in \Phi(\lambda A) \). Let \(V \subseteq \tau(x) \).

\[\Rightarrow V = \lambda x + V' \text{ for some } V' \subseteq \tau(0). \]

Since \(\lambda \cdot 0 = 0 \) and scalar multiplication is continuous in a topological vector space, \(\exists V_0 \subseteq \tau(0) \) such that \(V = \lambda V_0 \).

So \(V = \lambda x + \lambda V_0 = \lambda(x + V_0) = \lambda W \), where \(W \subseteq \tau(x) \).

Now \(\forall V \subseteq \tau(x), A \cap W \subseteq G \Rightarrow \lambda A \cap V = \lambda A \cap \lambda W = \lambda(A \cap W) \subseteq G \), by the second property of \(G \).

Proposition 3.2. If \(G \) is a grill in a linear topological space \((X, \tau)\), consisting of \(\tau_G - \)perfect sets or \(\tau_G - \)dense sets, then the closure operator \(\Psi_G(A) = A \cup \Phi_G(A) \), where \(\Phi_G(A) = \{x \in X : \forall A \in G, \forall y \in \tau(x)\} \) is a Linear \(\check{\text{C}} \check{\text{e}} \check{\text{c}} \) closure operator.

Proof: \(A \in G \) is either \(\tau_G - \)perfect set or \(\tau_G - \)dense set, hence \(A \cup \Phi_G(A) = \Phi_G(A) \).

\[\Psi_G(A) + \Phi_G(B) = (A \cup \Phi_G(A)) + (B \cup \Phi_G(B)) = \Phi_G(A) + \Phi_G(B) \subseteq \Phi_G(A + B) \]

Thus \(\Psi_G \) is a Linear \(\check{\text{C}} \check{\text{e}} \check{\text{c}} \) closure operator.

Proposition 3.3. If \(G \) is a grill (not necessarily linear) in a linear topological space \((X, \tau)\) consisting of \(\tau_G - \)perfect sets or \(\tau_G - \)closed sets, then the closure operator \(\Psi_G(A) = A \cup \Phi_G(A) \), where \(\Phi_G(A) = \{x \in X : \forall A \in G, \forall y \in \tau(x)\} \) is a Linear \(\check{\text{C}} \check{\text{e}} \check{\text{c}} \) closure operator.

Proof: \(A \in G \) is either \(\tau_G - \)perfect set or \(\tau_G - \)closed set, hence \(A \cup \Phi_G(A) = A \).

\[\Psi_G(A) + \Phi_G(B) = (A \cup \Phi_G(A)) + (B \cup \Phi_G(B)) = A + B \subseteq (A + B) \cup \Phi_G(A + B) = \Psi_G(A + B). \]

Thus \(\Psi_G \) is a Linear \(\check{\text{C}} \check{\text{e}} \check{\text{c}} \) closure operator.

Note: Let \(A \) be a fixed subset of \(X \), then the grill \(G_A = \{B \subseteq X : B \cap A^c \neq \emptyset\} \) is not a linear grill, because \(B \cap A^c \neq \emptyset \) and \(C \cap A^c \neq \emptyset \) need not always imply \((B + C) \cap A^c \neq \emptyset \).

IV. Linear Ideals

Definition 4.1. An ideal \(I \) on a linear topological space is a linear ideal if

1. \(A \cup B \in I \Rightarrow A \in I \) or \(B \in I \)
2. \(\lambda A \in I \Rightarrow A \in I \)

Proposition 4.1. If \(A \) and \(B \) are any two sets in a linear topological space with a linear ideal, then for the corresponding local function \(A^* + B^* \subseteq (A + B)^* \). Also \(\lambda A^* \subseteq (\lambda A)^* \).

Proof:

Let \(x \in A^* \) and \(y \in B^* \).

Then \(\forall U \subseteq \tau(x), \ A \cap U \in I \)

And \(\forall V \subseteq \tau(y), \ B \cap V \in I \).

Therefore \((A \cap U) \cup (B \cap V) \in I \).

i.e. \((A + B) \cap (U + V) \in I \).

Since \(U \subseteq \tau(x), \ V \subseteq \tau(y) \Rightarrow U + V \subseteq \tau(x + y) \),

we get \(x + y \in (A + B)^* \).

Thus \(A^* + B^* \subseteq (A + B)^* \).

Now let \(x \in A^* \), then \(\lambda x \in \lambda A^* \).

And \(V \subseteq \tau(x) \), \(A \cap U \notin I \).

Let \(V = \lambda(x + y) \), \(A \cap V \subseteq G \).

\[\Rightarrow \lambda A \cap V = \lambda x + \lambda W = \lambda(A \cap W) \subseteq G \],

Thus \(\Psi_G \) is a Linear \(\check{\text{C}} \check{\text{e}} \check{\text{c}} \) closure operator.

Proposition 4.2. If \(I \) is a linear ideal in a linear topological space \((X, \tau)\) consisting of \(\tau_I - \)perfect sets or \(\tau_I - \)dense sets in itself, then the closure operator \(\text{cl}^I(A) = A \cup A^I \), where \(A^I(I, \tau) = \{x \in X : \forall A \in I, \forall y \in \tau(x)\} \), is a Linear \(\check{\text{C}} \check{\text{e}} \check{\text{c}} \) closure operator.

Proof:

\(A \in I \) is either \(\tau_I - \)perfect sets or \(\tau_I - \)dense in itself and hence \(A \subseteq A^I \).

\[\text{cl}^I(A) + \text{cl}^I(B) = (A \cup A^I) + (B \cup B^I) = A^I + B^I \subseteq (A + B)^I \subseteq (A + B) \cup (A + B)^I = \text{cl}^I(A + B) \]

Also \(\lambda \text{cl}^I(A) = \lambda(A \cup A^I) = \lambda A^I \subseteq \lambda(A) \cup (\lambda A)^I = \text{cl}^I(\lambda A) \).

Thus \(\text{cl}^I \) is a Linear \(\check{\text{C}} \check{\text{e}} \check{\text{c}} \) closure operator.

Proposition 4.3. If \(I \) is an ideal (not necessarily linear) in a linear topological space \((X, \tau)\) consisting of \(\tau_I - \)perfect sets or \(\tau_I - \)closed sets, then the closure operator \(\text{cl}^I(A) = A \cup A^I \), where \(A^I(I, \tau) = \{x \in X : \forall A \in I, \forall y \in \tau(x)\} \), is a Linear \(\check{\text{C}} \check{\text{e}} \check{\text{c}} \) closure operator.

Proof:

\(A \in I \) is either \(\tau_I - \)perfect sets or \(\tau_I - \)closed and hence \(A^I \subseteq A \).

\[\text{cl}^I(A) + \text{cl}^I(B) = (A \cup A^I) + (B \cup B^I) = A + B \subseteq (A + B) \cup (A + B)^I = \text{cl}^I(A + B) \]
Also \(\lambda \text{cl}'(A) = \lambda (A \cup A^*) = \lambda A \leq \lambda A \cup (\lambda A)^* = \text{cl}'(\lambda A) \), showing that \(\text{cl}' \) is a Linear Čech closure operator.

V. EQUIVALENCE OF TOPOLOGIES OBTAINED FROM LINEAR IDEALS AND LINEAR GRILLS

Proposition 5.1. Let \(V \) be a vector space and let \(\mathcal{G} \subseteq \varphi(V) \). Then \(\mathcal{G} \) is a linear grill on \(V \) if and only if \(I(\mathcal{G}) = \{ A \in \varphi(V) \mid A \notin \mathcal{G} \} \) is a linear ideal on \(V \).

Proof: A. Kandil et al. [7] proved that \(\mathcal{G} \) is a grill if and only if \(I(\mathcal{G}) \) is an ideal.

We have to prove the linearity conditions.

Let \(G \) be a linear grill. Then \(A, B \in G \Rightarrow A + B \in G \) and \(A \in G \Rightarrow \lambda A \in G \).

Let \(\lambda \in \mathbb{R} \). Then, \(A, B \in G \Rightarrow \lambda A \in G \).

\[\Rightarrow \lambda A + B \in (\mathcal{G}). \]

Also \(\lambda A \in G \Rightarrow \lambda A \in G \Rightarrow \lambda \lambda A \in \mathcal{G} \).

Hence \(\lambda \mathcal{G} \) is a linear ideal.

Now assume that \(I(\mathcal{G}) \) is a linear ideal.

Let \(A, B \in \mathcal{G} \). Then, \(A, B \in \mathcal{G} \).

\[\Rightarrow \lambda A + B \in \mathcal{G}. \]

Also \(\lambda A \in \mathcal{G} \Rightarrow \lambda A \in I(\mathcal{G}) \Rightarrow \lambda A \in \mathcal{G}. \)

Hence \(\mathcal{G} \) is a linear grill.

Proposition 5.2. Let \(V \) be a vector space and \(I \subseteq \varphi(V) \). Then \(\text{Is} \) is a linear ideal on \(V \) if and only if \(I(V) = \{ A \in \varphi(V) \mid A \notin I \} \) is a linear grill on \(V \).

VI. NEW OPERATORS USING LINEAR IDEALS AND LINEAR GRILLS

Definition 6.1. [12] Let \((X, \tau) \) be a topological space and \(\mathcal{G} \) be a grill on \(X \). A mapping \(\Phi : \varphi(X) \rightarrow \varphi(X) \), denoted \(\Phi^s \) for \(A \in \varphi(X) \) (simply \(\Phi^s(A) \)), is called the operator associated with \(\mathcal{G} \) and \(\tau \) which is defined by \(\Phi^s(A) = \{ x \in X : U \cap A \in \mathcal{G}, \forall U \in \text{SO}(X, \tau) \} \), \(\forall A \in \varphi(X) \).

Definition 6.2. Let \((X, \tau) \) be a topological space and \(I \subseteq \varphi(X) \) be an ideal on \(X \). A mapping \(\Phi^\ast : \varphi(X) \rightarrow \varphi(X), \) denoted \(\Phi^\ast \) for \(A \in \varphi(X) \), is called the operator associated with \(I \) and \(\tau \) which is defined by \(\Phi^\ast(A) = \{ x \in X : U \cap A \in \mathcal{G}, \forall U \in \text{SO}(X, \tau) \} \), \(\forall A \in \varphi(X) \).

Definition 6.3. [12] Let \((X, \tau, \mathcal{G}) \) be a grill topological space. An operator \(\Psi^\ast : \varphi(X) \rightarrow \varphi(X) \) is defined as \(\Psi^\ast(A) = \{ x \in X : \exists U \in \text{SO}(X, \tau) \} \), \(\forall A \in \varphi(X) \).

Definition 6.4. Let \((X, \tau, I) \) be an ideal topological space. An operator \(\text{cl}^\ast : \varphi(X) \rightarrow \varphi(X) \) is defined as \(\text{cl}^\ast(A) = A \cup \text{A}^\ast, \forall A \in \varphi(X) \).

Theorem 6.1. [12] The operator \(\Psi^\ast \) satisfies Kuratowski’s closure axioms.

Theorem 6.2. The operator \(\text{cl}^\ast \) satisfies Kuratowski’s closure axioms.

Definition 6.5. [12] A grill on a space \(X \) which carries a topology \(\tau \) generates a unique topology on \(X \) depends on \(\Psi^\ast \) and \(\Phi^\ast \) operators symbolized by \(\tau^\ast \) and defined by \(\tau^\ast = \{ U \subseteq X : \varphi^\ast(X - U) = (X - U) \} \), for \(A \subseteq X \).

Definition 6.6. An ideal on a space \(X \) which carries a topology \(\tau \) generates a unique topology on \(X \) depends on \(\text{cl}^\ast \) symbolized by \(\tau^\ast \) and defined by \(\tau^\ast = \{ U \subseteq X : \text{cl}^\ast(X - U) = (X - U) \} \), for \(A \subseteq X \).

Lemma 6.1. If \(A \) and \(B \) are semi-open sets in a Linear topological space, then \(A + B \) is also a semi-open set.

Proof: Since \(A \) and \(B \) are semi-open sets, \(A \subseteq \text{cl}(\text{int}(A)) \) and \(B \subseteq \text{cl}(\text{int}(B)) \).

\[\Rightarrow A + B \subseteq \text{cl}(\text{int}(A)) + \text{cl}(\text{int}(B)). \]

For a linear topological closure operator, \(\text{cl}(A + B) \subseteq \text{cl}(A + B) \).

Hence \(A + B \subseteq \text{cl}(\text{int}(A) + \text{int}(B)) \subseteq \text{cl}(\text{int}(A + B)) \), again by the property of linear topological interior operator.

Thus \(A + B \) is a semi-open set.

Proposition 6.1. If \(\mathcal{G} \) is a linear grill in a topological vector space \((X, \tau) \), then \(\Phi^s(A) + \Phi^s(B) \subseteq \Phi^s(A + B), \forall A, B \in \varphi(X) \).

Proof: Let \(x \in \Phi^s(A) \) and \(y \in \Phi^s(B) \).

\[\Rightarrow U_x \cap A \subseteq U_y \subseteq \varphi(X, \tau) \]

And \(U_y \cap B \subseteq \varphi(X, \tau) \).

\[\Rightarrow \{ U_x \cap A \} + \{ U_y \cap B \} \subseteq \varphi(X, \tau) \]

\[\Rightarrow (U_x + U_y) \cap A \subseteq \varphi(X, \tau) \]

\[\Rightarrow (U_x + U_y) \cap A \subseteq \varphi(X, \tau) \]

Let \(U_x \cap A \subseteq \varphi(X, \tau) \).

Then \(U_x + y \subseteq \text{cl}(U_x + y) \),

\[\text{int}(U_x + y) \)

is an open set containing \(x + y \),

By the property of topological vector spaces, \(\exists \) two open sets \(V_x \) and \(V_y \) containing...
x and y respectively such that \(V_x + V_y \subseteq \text{int}(U_{xy}) \subseteq U_{x+y} \).

\[\Rightarrow (V_x + V_y) \cap (A + B) \subseteq U_{x+y} \cap (A + B) \]

Since \(G \) is a grill, it follows that \(U_{x+y} \cap (A + B) \) belongs to \(G \).

Hence, \(x + y \in \Phi^+(A + B) \)

\[\Rightarrow \Phi^+(A) + \Phi^+(B) \subseteq \Phi^+(A + B), \forall A, B \in \phi(X). \]

Proposition 6.2. (1) If \(G \) is a linear grill in a topological vector space \((X, \tau)\), then \(\Psi^s \) is a linear \(\text{Čech} \) closure operator if \(G \) has only \(\tau^*_G \)-dense set in itself or \(\tau^*_G \)-perfect set.

(2) If \(G \) is a grill in a topological vector space \((X, \tau)\), then \(\Psi^s \) is a linear \(\text{Čech} \) closure operator if \(G \) has only \(\tau^*_G \)-closed sets or \(\tau^*_G \)-perfect sets.

Proof: (1) A. A. Nasef and A. A. Azzam [12] has proved that \(\Psi^s \) is a Kuratowski closure operator.

We want to prove the linearity conditions,

\[\Psi^*(A) + \Psi^*(B) \subseteq \Psi^*(A + B). \]

\[\Psi^*(A) = A \cup \Phi^+(A) = \Phi^+(A), \text{ since } A \subseteq \Phi^+(A) \]

\[\Psi^*(A) + \Psi^*(B) = (A \cup \Phi^+(A)) + (B \cup \Phi^+(B)) = \Phi^+(A) + \Phi^+(B) \subseteq \Phi^*(A + B) \subseteq (A + B) \cup \Phi^*(A + B) \]

\[= \Psi^*(A + B). \]

Similarly, \(\lambda \Psi^*(A) \subseteq \Psi^*(\lambda A) \) and hence \(\Psi^s \) is a \(\text{Čech} \) closure operator.

(2) If \(A \subseteq X \) is \(\tau^*_G \)-closed, \(A \cup \Phi^*(A) = A \) and the proof follows accordingly.

Proposition 6.3. If I is a linear ideal in a topological vector space \((X, \tau)\), then the function \(A^+(I, \tau) = \{x \in X | U_x \cap A \subseteq I, \forall U_x \in SO(X, \tau) \} \) satisfies \(A^+ + B^+ \subseteq (A + B)^+ \).

Proof: Let \(x \in A^+ \) and \(y \in B^+ \).

\[\Rightarrow U_x \cap A \subseteq I, \forall U_x \in SO(X, \tau) \text{ and } U_y \cap B \subseteq I, \forall U_y \in SO(X, \tau) \]

\[\Rightarrow (U_x \cap A) + (U_y \cap B) \subseteq I, \forall U_x, U_y \in SO(X, \tau) \]

\[\Rightarrow (U_x + U_y) \cap (A + B) \subseteq I \]

Let \(U_{x+y} \subseteq SO(X, \tau) \). Then \(U_{x+y} \subseteq cl(\text{int}(U_{x+y})) \).

\(\text{int}(U_{x+y}) \) is an open set containing \(x + y \).

By the property of topological vector spaces, there exists two open sets \(V_x \) and \(V_y \) containing \(x \) and \(y \) respectively such that \(V_x + V_y \subseteq \text{int}(U_{x+y}) \subseteq U_{x+y} \).

\[\Rightarrow (V_x + V_y) \cap (A + B) \subseteq U_{x+y} \cap (A + B). \]

Hence by the property of ideal, if \(U_{x+y} \cap (A + B) \subseteq I \), then \((V_x + V_y) \cap (A + B) \subseteq I \).

So \(U_{x+y} \cap (A + B) \subseteq I \Rightarrow x + y \in (A + B)^+ \).

Thus \(A^+ + B^+ \subseteq (A + B)^+ \).

Proposition 6.4. (1) If I is a linear ideal in a topological vector space \((X, \tau)\), then \(cl^I \) is a linear \(\text{Čech} \) closure operator if I has only \(\tau^I \)-dense set in itself or \(\tau^I \)-perfect sets.

(2) If I is an ideal in a topological vector space \((X, \tau)\), then \(cl^I \) is a linear \(\text{Čech} \) closure operator if I has only \(\tau^I \)-closed sets or \(\tau^I \)-perfect sets.

Proof: Proof is analogous to that of propositions 6.2 using proposition 6.3.

VII. CONCLUSIONS

The topology obtained from a Linear \(\text{Čech} \) closure operator is a \(\tau \)-topology, hence it is Hausdorff.

The topology derived from a grill is finer than the original topology. Hence the topology we obtained from the Linear \(\text{Čech} \) closure operator derived from linear grills or linear ideals possesses a significant role in the theory of topological vector spaces.

ACKNOWLEDGMENT

The author is indebted to the University Grants Commission as the work is under the Faculty Development Programme of UGC(XII plan).

REFERENCES

