On Weyl – Concircular and Weyl – Conharmonic Sasakian Recurrent and Symmetric Spaces of Second Order

K.S. Rawat, Sandeep Chauhan
Department of Mathematics, H.N.B. Garhwal University Campus, Badshahi Thaul, Tehri (Garhwal) -249199 (Uttarakhand)

Abstract

In the present paper, we have studied and defined Weyl–Concircular Sasakian and Weyl-Conharmonic Sasakian Recurrent and symmetric space of second order. The relation between Weyl–Concircular and Weyl–Conharmonic Curvature tensor is defined and several theorem have been established therein.

Key words: Sasakian spaces, Weyl-Concircular, Weyl-Conharmonic.

Introduction

An n- dimensional Sasakian space S_n (or, normal Contact metric spaces) is a Riemannian space which admits a unit Killing Vector field η_i satisfying okumura [4]

$$\nabla_i \nabla_j \eta_k = \eta_j g_{ik} - \eta_k g_{ij} \quad \ldots (1)$$

It is well known that the Sasakian space is orientable and odd dimensional. Also, we know that an n – dimensional Kaehlerian space K_n is a Riemannian space, which admits a structure tensor field F_i^h satisfying Yano [10]

$$F^h_i F^h_i = -\delta^i_j, \quad \ldots \ (2)$$

$$F_{ij} = -F_{ji} \ , \ (F_{ij} = F^{a}_{ij} g_{aj}) \quad \ldots \ (3)$$

and

$$F^{h}_{ij} = 0 \quad \ldots \ (4)$$

Where the comma (,) followed by an index denotes the operator of Covariant differentiation with respect to the metric tensor g_{ij} of the Riemannian space.

The Riemannian Curvature tensor field denoted by $R^h_{ijk} \ , \$ is given by

$$R^h_{ijk} = \partial_t \left\{ \left[\frac{h}{j k} \right] - \partial_t \left\{ \frac{h}{i k} \right\} + \left\{ \frac{h}{i j} \right\} \left\{ \frac{h}{j k} \right\} \left\{ \frac{h}{i k} \right\} - \left\{ \frac{h}{j k} \right\} \left\{ \frac{h}{i j} \right\} \left\{ \frac{h}{i k} \right\} \left\{ \frac{h}{j k} \right\} \left\{ \frac{h}{i j} \right\} \right\} \ldots (5)$$

where $\partial_t = \frac{\partial}{\partial x^t}$

The Ricci - tensor and the Scalar curvature in S_n are respectively given by

$$R_{ij} = R^a_{ija} \quad and \quad R = R_{ij} g^{ij} \quad \ldots (6)$$
If we define a tensor S_{ij} by

$$S_{ij} = F_i^a R_{a,j}, \quad \ldots \ (7)$$

Then, we have

$$S_{ij} = -S_{ji}, \quad \ldots \ (8)$$

$$F_i^a S_{aj} = -S_{ia} F_j^a, \quad \ldots \ (9)$$

and

$$F_i^a S_{k,a} = R_{ji,k} - R_{k,i,j} \quad \ldots \ (10)$$

It has been verified in Yano [10] that the metric tensor g_{ij} and the Ricci-tensor denoted by R_{ij} are hybrid in i and j. Therefore, we get

$$g_{ij} = g_{rs} F_i^r F_j^s, \quad \ldots \ (11)$$

and

$$R_{ij} = R_{rs} F_i^r F_j^s, \quad \ldots \ (12)$$

Weyl-Concircular curvature and Weyl-Conharmonic curvature tensor in S_n respectively give by

$$M_{ijk}^h = R_{ijk}^h - \frac{R}{n(n-1)} (g_{ij} \delta_k^h - g_{ik} \delta_j^h) \quad \ldots \ (13)$$

and

$$L_{ijk}^h = R_{ijk}^h - \frac{1}{(n-2)} (g_{ij} R_k^h - g_{ik} R_j^h + R_{ij} \delta_k^h - R_{ik} \delta_j^h) \quad \ldots \ (14)$$

In view of equations (13) and (14), we have

$$L_{ijk}^h = M_{ijk}^h + \frac{R}{n(n-1)} (g_{ij} \delta_k^h - g_{ik} \delta_j^h) - \frac{1}{(n-2)} (g_{ij} R_k^h - g_{ik} R_j^h + R_{ij} \delta_k^h - R_{ik} \delta_j^h) \quad \ldots \ (15)$$

We shall use the following :

Definition – 1: A Sasakian space satisfying the condition Singh [7]

$$R_{ijk,ab} - \lambda_{ab} R_{ijk}^h = 0, \quad \ldots \ (16)$$

For some non-zero tensor λ_{ab}, will be called a Sasakian recurrent space of Second order and denoted by S_n^{**} and said to be Sasakian Ricci-recurrent space of Second order, if it satisfies

$$R_{ij,ab} - \lambda_{ab} R_{ij} = 0, \quad \ldots \ (17)$$

Multiplying equation (17) by g^{ij}, we have

$$R_{ab} - \lambda_{ab} R = 0, \quad \ldots \ (18)$$

Weyl – Sasakian Concircular and Weyl – Sasakian Conharmonic Recurrent Spaces of Second order

Definition – 2: A Sasakian space S_n satisfying the condition

$$M_{ijk,ab} - \lambda_{ab} M_{ijk}^h = 0, \quad \ldots \ (19)$$

For some non-zero tensor λ_{ab}, will be called a Weyl – Sasakian Concircular recurrent space of second order and is denoted by M^{***}- space.

Definition – 3: A Sasakian space S_n satisfying the condition

$$L_{ijk,ab} - \lambda_{ab} L_{ijk}^h = 0, \quad \ldots \ (20)$$

For some non-zero tensor λ_{ab}, will be called a Weyl – Sasakian Conharmonic recurrent space of second order and is denoted by L^{***}- space.
\[L_{ij,k,ab}^h - \lambda_{ab} L_{ijk}^h = 0, \quad \ldots \,(20) \]

For some non-zero tensor \(\lambda_{ab} \), is said to be Weyl – Sasakian Conharmonic recurrent space of second order and is denoted by \(L^* \)- space. Now, we have the following Theorems:

Theorem – 1 : Every \(S_n^{**} \)- space is \(M^{**} \)- space.

Proof : Differentiating equation (13) Covariantly with respect to \(x^a \), again differentiate the result thus obtained Covariantly with respect to \(x^b \), we have

\[M_{ijk,ab}^h = R_{ijk,ab}^h - \frac{R_{ab}}{n(n-1)} \left(g_{ij} \delta_k^h - g_{ik} \delta_j^h \right) \quad \ldots \,(21) \]

Transvecting equation (13) by \(\lambda_{ab} \), and subtracting the resulting equation from (21) we have

\[M_{ijk,ab}^h - \lambda_{ab} M_{ijk}^h = R_{ijk,ab}^h - \lambda_{ab} R_{ij,k}^h - \frac{(R_{ab} - \lambda_{ab} R)}{n(n-1)} \left(g_{ij} \delta_k^h - g_{ik} \delta_j^h \right) \quad \ldots \,(22) \]

If the space is \(S_n^{**} \)- space , then equation (16) and (17) are satisfied and (22) in view of (16) and (17), gives

\[M_{ijk,ab}^h - \lambda_{ab} M_{ijk}^h = 0 \]

Which shows that the space is Weyl – Sasakian Conharmonic recurrent space of second order Or, \(M^{**} \)- space.

Theorem – 2 : Every \(S_n^{**} \)- space is \(L^{**} \)- space.

Proof : Differentiating equation (14) covariantly w.r to \(x^a \), again differentiate the result so obtained covariantly with respect to \(x^b \), we have

\[L_{ijk,ab}^h = R_{ijk,ab}^h - \frac{1}{(n-2)} \left(g_{ij} \delta_k^h - g_{ik} \delta_j^h \right) \quad \ldots \,(23) \]

Transvecting (14) by \(\lambda_{ab} \), then subtracting the resulting equation from (23), we have

\[L_{ijk,ab}^h - \lambda_{ab} L_{ijk}^h = R_{ijk,ab}^h - \lambda_{ab} R_{ij,k}^h - \frac{1}{(n-2)} \left[(R_{ab} - \lambda_{ab} R_{ab}^h) \delta_{ij} - (R_{ab}^h - \lambda_{ab} R_{ab}) \delta_{ij} \right] \quad \ldots \,(24) \]

If the space is \(S_n^{**} \)- space then equation (16), (17) and (18) are satisfied and equation (24), in view of equations (16), (17) and (18) gives.

\[L_{ijk,ab}^h - \lambda_{ab} L_{ijk}^h = 0 \]

Which shows that the space is \(L^{**} \)- space. This Completes the proof.

Theorem – 3 : If in a Sasakian space \(S_n \) any two of the following properties are satisfied ;

(i) The space is Ricci-recurrent of second order,

(ii) The space is \(M^{**} \)- space,

(iii) The space is \(L^{**} \)- space, Then the third is also satisfied.

Proof : Differentiating (15) Covariantly with respect to \(x^a \), again differentiate the result thus obtained covariantly w.r to \(x^b \), we have

\[L_{ijk,ab}^h = M_{ijk,ab}^h + \frac{R_{ab}}{n(n-1)} \left(g_{ij} \delta_k^h - g_{ik} \delta_j^h \right) - \frac{1}{(n-2)} \left(g_{ij} R_{jk,ab}^h - g_{ik} R_{ij,ab}^h + R_{ij,ab} \delta_k^h - R_{ik,ab} \delta_j^h \right) \quad \ldots \,(25) \]
Transvecting equation (15) by λ_{ab}, then subtracting the resulting equation from (25), we have

$$L^h_{ijk,ab} - \lambda_{ab} L^h_{ijk} = M^h_{ijk,ab} - \lambda_{ab} M^h_{ijk} + \frac{(R_{ab} - \lambda_{ab} R)}{n(n-1)}(g_{ij} \delta^h_k - g_{ik} \delta^h_j) - \frac{1}{n-2} [(R^h_{k,ab} - \lambda_{ab} R^h_k) g_{ij} - (R^h_{y,ab} - \lambda_{ab} R^h_y) \delta^h_i]$$

\[\cdots (26) \]

Making use of (16), (17), (18), (19), (20) and (26), we obtain the proof of the theorem.

Theorem – 4: The necessary and sufficient Condition for a M**- space to be S^n_{**} - space, is that the space be scalar recurrent of second order.

Proof: Let M**- space be S^n_{**} - space, so that equation (16) and (19) are satisfied and (22), in view of equation (18), reduces to

$$\left(R_{ab} - \lambda_{ab} R \right) \left(g_{ij} \delta^h_k - g_{ik} \delta^h_j \right) = 0$$

Which after further Calculation and simplification shows that the space is scalar recurrent of second order.

Conversely, let the M**- space be scalar recurrent of second order, so that equation (18) are satisfied, then equation (22), in view of equations (18) and (19), reduces to.

$$R^h_{ijk,ab} - \lambda_{ab} R^h_{ijk} = 0, \cdots (27)$$

Which shows that the space is S^n_{**} - space. Which proofs the theorem.

Weyl–Sasakian Concircular and Weyl–Sasakian Conharmonic Symmetric Spaces of second order

Definition – 4: A Sasakian space satisfying the Condition

$$R^h_{ijk,ab} = 0, \text{ or, equivalently } R_{ijkl,ab} = 0 \cdots (28)$$

will be called Sasakian symmetric space of second order, and will be called Sasakian Ricci – symmetric space of second order, if it satisfies

$$R_{ij,ab} = 0 \cdots (29)$$

Multiplying equation (28) by g^{ij}, we have

$$R_{ab} = 0 \cdots (29)$$

Remark – From equation (27), it follows that every Sasakian symmetric space of second order is Sasakian Ricci–symmetric space of second order, but the converse is not necessarily true.

Definition – 5: A Sasakian space satisfying the Condition

$$M^h_{ijk,ab} = 0, \text{ or, equivalently } M_{ijkl,ab} = 0 \cdots (30)$$

Will be called a Weyl – Sasakian Concircular Symmetric space of second order.

Definition – 6: A Sasakian space S_n satisfying the Condition

$$L^h_{ijk,ab} = 0, \text{ or, equivalently } L_{ijkl,ab} = 0 \cdots (31)$$

Will be called a Weyl–Sasakian Conharmonic symmetric space of second order.

Theorem – 5: Every Sasakian symmetric space of second order is Weyl–Sasakian Concircular symmetric space of second order.
Proof: If the space is Sasakian symmetric space of second order, then equations (27) and (28) are satisfied and equation (21), in view of equations (27) and ((28), reduces to

\[M_{ijk,ab}^h = 0, \]

Which shows that the space is Weyl–Sasakian Concircular symmetric space of second order.

Theorem – 6: Every Sasakian symmetric space of second order is Weyl–Sasakian Conharmonic symmetric space of second order.

Proof: If the space is Sasakian symmetric space of second order, then equations (27) and (28) are satisfied and equation (23), in view of equations (27) and ((28), reduces to

\[L_{ijk,ab}^h = 0, \]

Which shows that the space is Weyl–Sasakian Conharmonic symmetric space of second order.

Theorem – 7: If in a Sasakian space any two of the following properties are satisfied:

(i) The Space is Ricci–symmetric of second order.
(ii) The Space is Weyl–Sasakian Concircular symmetric of second order.
(iii) The Space is Weyl–Sasakian Conharmonic symmetric space of second order, then it must also satisfy the third.

Proof: In a Sasakian Ricci–symmetric space of second order, the relation (28) is satisfied. Whereas the Weyl–Sasakian Concircular symmetric space of second order and Weyl–Sasakian Conharmonic symmetric space of second order are given respectively by the condition (30) and (31). The statement of the above theorem follows in view of equations (28), (30), (31) and (25).

References