ABSTRACT
In the present paper we evaluate a generalized finite integral involving the product of a sequence of functions, the multivariable Aleph-function, the multivariable I-function defined by Prasad and general class of polynomials of several variables. The importance of the result established in this paper lies in the fact they involve the Aleph-function of several variables which is sufficiently general in nature and capable to yielding a large of results merely by specializing the parameters their in.

Keywords: Multivariable Aleph-function, general class of polynomial, sequence of functions, multivariable I-function, multivariable H-function

2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1. Introduction and preliminaries.

The function Aleph of several variables generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [7], itself is an a generalisation of G and H-functions of multiple variables. The multiple Mellin-Barnes integral occurring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

We define:

\[N(z_1, \ldots, z_r) = N^{0,N; M_1,N_1,\ldots,M_r,N_r}_{P_r,Q_r; i; P^{(1)}_r, Q^{(1)}_r, i^{(1)}_r; P^{(2)}_r, Q^{(2)}_r, i^{(2)}_r; \ldots; P^{(r)}_r, Q^{(r)}_r, i^{(r)}_r; R^{(r)}_r} \]

\[= N^{0,N; M_1,N_1,\ldots,M_r,N_r} \prod_{k=1}^{r} \frac{\Gamma(1 - a_j + \sum_{k=1}^{r} \alpha_j^{(k)} s_k)}{\sum_{i=1}^{n} \frac{\Gamma(a_{ji} - \sum_{k=1}^{r} \alpha_{ji}^{(k)} s_k)}{\Gamma(1 - b_{ji} + \sum_{k=1}^{r} \beta_{ji}^{(k)} s_k)}} \]

The function Aleph of several variables generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [7], itself is an a generalisation of G and H-functions of multiple variables. The multiple Mellin-Barnes integral occurring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

We define:

\[N(z_1, \ldots, z_r) = N^{0,N; M_1,N_1,\ldots,M_r,N_r}_{P_r,Q_r; i; P^{(1)}_r, Q^{(1)}_r, i^{(1)}_r; P^{(2)}_r, Q^{(2)}_r, i^{(2)}_r; \ldots; P^{(r)}_r, Q^{(r)}_r, i^{(r)}_r; R^{(r)}_r} \]

\[([\alpha_j^{(1)}, \alpha_j^{(2)}, \ldots, \alpha_j^{(r)}]; N_1, P_1) \cdot \frac{\Gamma(1 - a_j^{(1)} + \sum_{k=1}^{r} \alpha_j^{(k)} s_k)}{\sum_{i=1}^{n} \frac{\Gamma(a_{ji}^{(1)} - \sum_{k=1}^{r} \alpha_{ji}^{(k)} s_k)}{\Gamma(1 - b_{ji}^{(1)} + \sum_{k=1}^{r} \beta_{ji}^{(k)} s_k)}} \]

\[= \frac{1}{(2\pi i)^r} \int_{L_1} \cdots \int_{L_r} \psi(s_1, \ldots, s_r) \prod_{k=1}^{r} \theta_k(s_k) g_k^{s_k} \, ds_1 \cdots ds_r \] (1.1)

with \(\omega = \sqrt{-1} \)

\[\psi(s_1, \ldots, s_r) = \frac{\prod_{j=1}^{n} \Gamma(1 - a_j + \sum_{k=1}^{r} \alpha_j^{(k)} s_k)}{\sum_{i=1}^{n} \frac{\Gamma(a_{ji} - \sum_{k=1}^{r} \alpha_{ji}^{(k)} s_k)}{\Gamma(1 - b_{ji} + \sum_{k=1}^{r} \beta_{ji}^{(k)} s_k)}} \] (1.2)
and $\theta_k(s_k) = \frac{\prod_{j=1}^{M_k} \Gamma(d_j^{(k)} - \delta_j^{(k)} s_k) \prod_{j=1}^{N_k} \Gamma(1 - c_j^{(k)} + \gamma_j^{(k)} s_k)}{\sum_{i(k)=1}^{R(k)} \prod_{j=M_k+1}^{Q_i(k)} \Gamma(1 - d_j^{(k)} + \delta_j^{(k)} s_k) \prod_{j=N_k+1}^{P_i(k)} \Gamma(c_j^{(k)} - \gamma_j^{(k)} s_k)}$ \hspace{1cm} (1.3)

Suppose, as usual, that the parameters $b_j, j = 1, \ldots, Q, a_j, j = 1, \ldots, P$;
$c_j^{(k)}, j = n_k + 1, \ldots, P_j^{(k)}; c_j^{(k)}, j = 1, \ldots, N_k$;
$d_j^{(k)}; j = M_k + 1, \ldots, Q_i^{(k)}; d_j^{(k)}, j = 1, \ldots, M_k$;

with $k = 1, \ldots, r$, $i = 1, \ldots, R$, $i^{(k)} = 1, \ldots, R^{(k)}$

are complex numbers, and the α's, β's, γ's and δ's are assumed to be positive real numbers for standardization purpose such that

$$U_{i}^{(k)} = \sum_{j=1}^{N_k} \alpha_j^{(k)} + \tau_i \sum_{j=N_k+1}^{P_i^{(k)}} \alpha_j^{(k)} + \sum_{j=1}^{N_k} \gamma_j^{(k)} + \tau_i \sum_{j=N_k+1}^{P_i^{(k)}} \gamma_j^{(k)} - \tau_i \sum_{j=1}^{P_i^{(k)}} 0$$

The real numbers τ_i are positives for $i = 1$ to R, $\tau_i^{(k)}$ are positives for $i^{(k)} = 1$ to $R^{(k)}$.

The contour L_k is in the s_k-p plane and run from $\sigma - i\infty$ to $\sigma + i\infty$ where σ is a real number with loop, if necessary, ensure that the poles of $\Gamma(d_j^{(k)} - \delta_j^{(k)} s_k)$ with $j = 1$ to m_k are separated from those of $\Gamma(1 - c_j^{(k)} + \gamma_j^{(k)} s_k)$ with $j = 1$ to N_k to the left of the contour L_k. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H-function given by as:

$$|\arg z_k| < \frac{1}{2} A_i^{(k)} \pi,$$ where

$$A_i^{(k)} = \sum_{j=1}^{N_k} \alpha_j^{(k)} - \tau_i \sum_{j=N_k+1}^{P_i^{(k)}} \alpha_j^{(k)} - \tau_i \sum_{j=1}^{P_i^{(k)}} \beta_j^{(k)} + \sum_{j=1}^{N_k} \gamma_j^{(k)} - \tau_i \sum_{j=N_k+1}^{P_i^{(k)}} \gamma_j^{(k)}$$

$$+ \sum_{j=1}^{M_k} \delta_j^{(k)} - \tau_i^{(k)} \sum_{j=M_k+1}^{Q_i^{(k)}} \delta_j^{(k)} > 0, \text{ with } k = 1, \ldots, r, i = 1, \ldots, R, i^{(k)} = 1, \ldots, R^{(k)} \hspace{1cm} (1.5)$$

The complex numbers z_k are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the asymptotic expansion in the following convenient form:

$$\mathcal{N}(z_1, \ldots, z_r) = 0(|z_1|^{\alpha_1}, \ldots, |z_r|^{\alpha_r} \text{, } \max (|z_1|, \ldots, |z_r|) \to 0$$

$$\mathcal{N}(z_1, \ldots, z_r) = 0(|z_1|^{\beta_1}, \ldots, |z_r|^{\beta_r} \text{, } \min (|z_1|, \ldots, |z_r|) \to \infty$$

ISSN: 2231-5373 \hspace{1cm} http://www.ijmttjournal.org \hspace{1cm} Page 25
where, with \(k = 1, \cdots, r \) : \(\alpha_k = \min \{ Re(d_j^{(k)}/\delta_j^{(k)}) \}, j = 1, \cdots, M_k \) and
\[
\beta_k = \max \{ Re((c_j^{(k)} - 1)/\gamma_j^{(k)}) \}, j = 1, \cdots, N_k
\]
Serie representation of Aleph-function of several variables is given by
\[
N(y_1, \cdots, y_r) = \sum_{G_1, \cdots, G_r = 0}^{\infty} \sum_{g_1 = 0}^{M_1} \cdots \sum_{g_r = 0}^{M_r} \frac{(-)^{G_1 + \cdots + G_r}}{\delta_{g_1}^1 \cdots \delta_{g_r}^r G_1^1 \cdots G_r^r} \psi(\eta_{G_1, g_1}, \cdots, \eta_{G_r, g_r}) \\
\times \theta_1(\eta_{G_1, g_1}) \cdots \theta_r(\eta_{G_r, g_r}) y_1^{-\eta_{G_1, g_1}} \cdots y_r^{-\eta_{G_r, g_r}}
\] (1.6)

Where \(\psi(\cdot, \cdots, \cdot), \theta_i(\cdot), i = 1, \cdots, r \) are given respectively in (1.2), (1.3) and
\[
\eta_{G_i, g_i} = \frac{d_{g_i}^{(1)} + G_i}{\delta_{g_i}^{(1)}}, \cdots; \eta_{G_r, g_r} = \frac{d_{g_r}^{(r)} + G_r}{\delta_{g_r}^{(r)}}
\]
which is valid under the conditions \(\delta_{g_i}^{(i)} [d_{g_i}^{(i)} + p_i] \neq \delta_{g_i}^{(i)} [d_{g_i}^{(i)} + G_i] \) (1.7)

for \(j \neq M_i, M_i = 1, \cdots, \eta_{G_i, g_i} ; P_i, N_i = 0, 1, 2, \cdots ; y_i \neq 0, i = 1, \cdots, r \) (1.8)

In the document, we will note:
\[
G(\eta_{G_1, g_1}, \cdots, \eta_{G_r, g_r}) = \phi(\eta_{G_1, g_1}, \cdots, \eta_{G_r, g_r}) \theta_1(\eta_{G_1, g_1}) \cdots \theta_r(\eta_{G_r, g_r})
\] (1.9)

where \(\phi(\eta_{G_i, g_i}, \cdots, \eta_{G_r, g_r}), \theta_1(\eta_{G_1, g_1}), \cdots, \theta_r(\eta_{G_r, g_r}) \) are given respectively in (1.2) and (1.3)

We will note the Aleph-function of \(r \) variables \(N_{0,N;w}^0(c_1, \cdots, c_r) \) (1.10)

The multivariable I-function is defined in term of multiple Mellin-Barnes type integral:
\[
I(z_1, z_2, \cdots z_s) = I_{p_1, p_2, \cdots, p_s}^{0, n_2, 0, n_3, \cdots, 0, n_r, m', m'', \cdots; m^{(s)}, n^{(s)}}(z_1, z_2, \cdots z_s) \\
\begin{vmatrix}
(a_{2j}; \alpha'_{2j}; \alpha''_{2j}, p_{2j}^{(s)}; 1, q_{2j}^{(s)}; 1, p_{2j}^{(s)}; 1, q_{2j}^{(s)}; 1, p_{2j}^{(s)}; 1, q_{2j}^{(s)}) \\
. \\
. \\
. \\
(b_{2j}; \beta'_{2j}; \beta''_{2j}, q_{2j}^{(s)}; 1, p_{2j}^{(s)}; 1, q_{2j}^{(s)}; 1, p_{2j}^{(s)}; 1, q_{2j}^{(s)}; 1, p_{2j}^{(s)}; 1, q_{2j}^{(s)})
\end{vmatrix}
\] (1.11)
The defined integral of the above function, the existence and convergence conditions, see Y.N Prasad [4]. Throughout the present document, we assume that the existence and convergence conditions of the multivariable I-function.

The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H-function given by as:

\[
|\arg z_k| < \frac{1}{2} \Omega_i^{(k)} \pi, \quad \text{where}
\]

\[
\Omega_i^{(k)} = \sum_{k=1}^{n_i} \alpha_k^{(i)} - \sum_{k=n_i+1}^{p_i} \alpha_k^{(i)} + \sum_{k=1}^{m_i} \beta_k^{(i)} - \sum_{k=m_i+1}^{q_i} \beta_k^{(i)} + \left(\sum_{k=1}^{n_2} \alpha_{2k}^{(i)} - \sum_{k=n_2+1}^{p_2} \alpha_{2k}^{(i)} \right) + \cdots
\]

\[
\left(\sum_{k=1}^{n_s} \alpha_{sk}^{(i)} - \sum_{k=n_s+1}^{p_s} \alpha_{sk}^{(i)} \right) - \left(\sum_{k=1}^{q_2} \beta_{2k}^{(i)} + \sum_{k=1}^{q_3} \beta_{3k}^{(i)} + \cdots + \sum_{k=1}^{q_s} \beta_{sk}^{(i)} \right)
\]

where \(i = 1, \ldots, s \)

The complex numbers \(z_i \) are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable I-function.

We may establish the the asymptotic expansion in the following convenient form:

\[
I(z_1, \ldots, z_s) = 0(\max(|z_1|^{\alpha'_1}, \ldots, |z_s|^{\alpha'_s})) \cdot \max(|z_1|, \ldots, |z_s|) \rightarrow 0
\]

\[
I(z_1, \ldots, z_s) = 0(\min(|z_1|^{\beta'_1}, \ldots, |z_s|^{\beta'_s})) \cdot \min(|z_1|, \ldots, |z_s|) \rightarrow \infty
\]

where, with \(k = 1, \ldots, z : \alpha'_k = \min(Re(b_j^{(k)}/\beta'_j)), j = 1, \ldots, m_k \) and

\[
\beta'_k = \max(Re((\alpha'_j - 1)/\alpha'_j)), j = 1, \ldots, n_k
\]

We will use these following notations in this paper:

\[
U = p_2, q_2, p_3, q_3; \ldots; p_{s-1}, q_{s-1}; \quad V = 0, n_2; 0, n_3; \ldots; 0, n_{s-1}
\]

\[
W = (p', q'); \ldots; (p^{(s)}, q^{(s)}); \quad X = (m', n'); \ldots; (m^{(s)}, n^{(s)})
\]

\[
A = (a_{2k}, a'_{2k}, a''_{2k}); \ldots; (a_{(s-1)k}, a'_{(s-1)k}, a''_{(s-1)k}), \cdots, a_{(s-1)k})
\]

\[
B = (b_{2k}, \beta'_{2k}, \beta''_{2k}); \ldots; (b_{(s-1)k}, \beta'_{(s-1)k}, \beta''_{(s-1)k}), \cdots, \beta_{(s-1)k})
\]

\[
\mathfrak{A} = (a_{sk}, a'_{sk}, a''_{sk}), \ldots, a_{sk}^{(s)}); \quad \mathfrak{B} = (b_{sk}, \beta'_{sk}, \beta''_{sk}), \ldots, \beta_{sk}^{(s)})
\]

\[
A' = (a'_k, a'_k); \ldots; (a^{(s)}_k, a^{(s)}_k); \quad B' = (b'_k, \beta'_k), \ldots; (b^{(s)}_k, \beta^{(s)}_k)
\]
The multivariable I-function write:

\[I(z_1, \ldots, z_n) = I_{V:0,n;W}^{X:0,n;X} \left(\begin{array}{c} z_1 \\ \vdots \\ z_n \end{array} \right) \left[\begin{array}{c} A_1; A_1' \\ \vdots \\ B; B' \end{array} \right] \] \hspace{1cm} (1.20)

The generalized polynomials defined by Srivastava [8], is given in the following manner:

\[S_{N'_1, \ldots, N'_t}^{M'_1, \ldots, M'_t} [y_1, \ldots, y_t] = \sum_{K_1=0}^{N'_1/M'_1} \cdots \sum_{K_t=0}^{N'_t/M'_t} \frac{(-N'_1)^{M'_1} K_1}{K_1!} \cdots \frac{(-N'_t)^{M'_t} K_t}{K_t!} A[N'_1, K_1; \ldots; N'_t, K_t] y_1^{K_1} \cdots y_t^{K_t} \] \hspace{1cm} (1.21)

Where \(M'_1, \ldots, M'_t \) are arbitrary positive integers and the coefficients \(A[N'_1, K_1; \ldots; N'_t, K_t] \) are arbitrary constants, real or complex. In the present paper, we use the following notation:

\[a_1 = \frac{(-N'_1)^{M'_1} K_1}{K_1!} \cdots \frac{(-N'_t)^{M'_t} K_t}{K_t!} A[N'_1, K_1; \ldots; N'_t, K_t] \] \hspace{1cm} (1.22)

2. Sequence of function

Agarwal and Chaubey [1], Salim [6] and several others have studied a general sequence of functions. In the present document we shall study the following useful series formula for a general sequence of functions:

\[R^{\alpha,\beta}_{n}[x; E, F, g, h; p, q; \gamma; \delta; e^{-sx}] = \sum_{w,v,u,t,e,k_1,k_2} \psi(w, v, u, t, e, k_1, k_2) x^R \] \hspace{1cm} (2.1)

where

\[\sum_{w,v,u,t,e,k_1,k_2} = \sum_{w=0}^{\infty} \sum_{v=0}^{\infty} \sum_{u=0}^{\infty} \sum_{t=0}^{\infty} \sum_{e=0}^{\infty} \sum_{k_1=0}^{\infty} \sum_{k_2=0}^{\infty} \] \hspace{1cm} (2.2)

and the infinite series on the right side (2.1) is absolutely convergent, \(R = ln + qv + pt + rw + k_1 r + k_2 q \)

and

\[\psi(w, v, u, t, e, k_1, k_2) = \frac{(-)^t w + k_2 (-v) u (-t) \gamma t^n}{w! v! u! t! e! K_n k_1! k_2! (1 - \alpha - t) e} \] \hspace{1cm} (2.3)

where \(K_n \) is a sequence of constants.

By suitably specializing the parameters involving in (2.1), a general sequence of function reduced to generalized polynomials set studied by Raizada [5], a class of polynomials introduced by Fujiwara [3] and several others authors.
3. Required integral

We have the following integral, see Brychkow ([2], 4.1.4, 1 page 111).

\[
\int_0^a x^{s-1}(a - x)^{t-1} \left[1 - bx(a - x) \right]^{\mu} dx = a^{s+t-1} B(s, t) \times _3 F_2 \left(\begin{array}{c} s, t, -\mu \\ \frac{s+t+1}{2}, \frac{s+t}{2} \end{array} ; \frac{a^2 b}{4} \right)
\]

(3.1)

where \(a > 0, Re(s) > 0, Re(t) > 0, |arg(4 - a^2 b)| < \pi \)

4. Main integral

Let \(X_{s,t} = x^s(a - x)^t \), we have the following generalized finite integral:

\[
\sum_{r=0}^\infty \sum_{s=0}^{[N_1/M_1]} \sum_{t=0}^{[N_2/M_2]} \left[\frac{(-)^{G_1+\cdots+G_r}}{\delta_{g_1} G_1! \cdots \delta_{g_r} G_r!} G(\eta_{G_1,g_1} \cdots \eta_{G_r,g_r}) \right]
\]

\[
a_{1}^{(-\mu)_{n'}(a^{2} b)^{n'}} \psi(w, v, u, t, \epsilon, k_{1}, k_{2}) x_{1}^{p_{1}} \cdots x_{s}^{p_{s}} z_{1}^{\eta_{1,\gamma_{1}}} \cdots z_{t}^{\eta_{r,\gamma_{r}}} y_{1}^{K_{1}} \cdots y_{t}^{K_{t}} Z^{RA}
\]

\[
a^{RA(\gamma+\delta)+\sum_{i=1}^t K_{i}(\gamma_{i}+\mu_{i})+\sum_{i=1}^r \eta_{G_{i}},g_{i}(\alpha_{i}+\beta_{i})} J_{l_{0},n_{s}+4;X_{l_{0},n_{s}+4;X}}^{V_{0},n_{s}+4;X_{0},n_{s}+3;X}
\]

\[
\left(\begin{array}{c} Z_{1}^{a\gamma_{1}+\epsilon_{1}} \\ \cdots \\ Z_{s}^{a\gamma_{s}+\epsilon_{s}} \end{array} \right) A; \\
\left(\begin{array}{c} \cdots \\ \cdots \end{array} \right) B;
\]

(1-n'-s'+RA \gamma + \sum_{i=1}^t K_{i}(\gamma_{i}+\mu_{i}) + \sum_{i=1}^r \eta_{G_{i},g_{i}}(\alpha_{i}+\beta_{i}); \eta_{1}, \cdots, \eta_{s}),

(1-(s'+t')+RA(\gamma+\delta) + \sum_{i=1}^t K_{i}(\gamma_{i}+\mu_{i}) + \sum_{i=1}^r \eta_{G_{i},g_{i}}(\alpha_{i}+\beta_{i}); \epsilon_{1}, \cdots, \epsilon_{s}+\eta_{s}),

(\frac{1}{2} - \frac{1}{2})(s'+t')+RA(\gamma+\delta) + \sum_{i=1}^t K_{i}(\gamma_{i}+\mu_{i}) + \sum_{i=1}^r \eta_{G_{i},g_{i}}(\alpha_{i}+\beta_{i}); \frac{\epsilon_{1}+\eta_{1}}{2}, \cdots, \frac{\epsilon_{s}+\eta_{s}}{2}),

(\frac{1}{2} - \frac{1}{2})(s'+t')+RA(\gamma+\delta) + \sum_{i=1}^t K_{i}(\gamma_{i}+\mu_{i}) + \sum_{i=1}^r \eta_{G_{i},g_{i}}(\alpha_{i}+\beta_{i}); \frac{\epsilon_{1}+\eta_{1}}{2}, \cdots, \frac{\epsilon_{s}+\eta_{s}}{2}),
Provided that

\[(1-\frac{1}{2}(s'+t'+RA(\gamma + \delta) + \sum_{i=1}^{r} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i}(\alpha_i + \beta_i)) \frac{\epsilon_i + \eta_i}{2}, \ldots, \frac{\epsilon_s + \eta_s}{2}),
\]

\[(1-n'^{-1/2}(s'+t'+RA(\gamma + \delta) + \sum_{i=1}^{r} K_i(\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta_{G_i}(\alpha_i + \beta_i)) \frac{\epsilon_i + \eta_i}{2}, \ldots, \frac{\epsilon_s + \eta_s}{2}),
\]

\[(1-n^{-1}(t'+RA \delta) + \sum_{i=1}^{r} K_i \mu_i + \sum_{i=1}^{r} \eta_{G_i}(\beta_i)) \epsilon_1, \ldots, \epsilon_s), \mathfrak{A} : A', \mathfrak{B} : \mathfrak{B}'.
\]

(4.1)

Provided that

a) \(\min\{A, \gamma, \delta, \gamma_i, \mu_i, \alpha_j, \beta_j, \eta_k, \epsilon_k\} > 0, i = 1, \ldots, t, j = 1, \ldots, r, k = 1, \ldots, s\)

b) \(\text{Re}\left[s' + RA \gamma + \sum_{i=1}^{r} \alpha_i \min_{1 \leq j \leq M_i} \frac{d_j^{(i)}}{\delta_j^{(i)}} + \sum_{i=1}^{s} \eta_i \min_{1 \leq j \leq \min(i)} \frac{b_j^{(i)}}{\beta_j^{(i)}}\right] > 0\)

c) \(\text{Re}\left[t' + RA \delta + \sum_{i=1}^{r} \beta_i \min_{1 \leq j \leq M_i} \frac{d_j^{(i)}}{\delta_j^{(i)}} + \sum_{i=1}^{s} \epsilon_i \min_{1 \leq j \leq \min(i)} \frac{b_j^{(i)}}{\beta_j^{(i)}}\right] > 0\)

d) \(|arg z_k| < \frac{1}{2} A_i^{(k)} \pi, \text{ where } A_i^{(k)} \text{ is defined by (1.5)} ; i = 1, \ldots, r\)

e) \(|arg Z_k| < \frac{1}{2} \Omega_i^{(k)} \pi, \text{ where } \Omega_i^{(k)} \text{ is defined by (1.11)} ; i = 1, \ldots, s\)

f) The series occurring on the right-hand side of (4.1) is absolutely and uniformly convergent.

g) \(a > 0, |arg(4 - a^2 b)| < \pi\)

Proof

First, expressing the generalized sequence of functions \(R_{\alpha, \beta}^{A, B}[zX_{M_a, M_b}^A; E, F, g, h; p, q; \gamma, \delta; e^{-s(zX_{M_a, M_b})^s}] \) in multiple series with the help of equation (2.1), the Alph-function of \(r \) variables in series with the help of equation (1.6), the general class of polynomial of several variables \(S_{M_1, \ldots, M_t}^{N_1, \ldots, N_t} \) with the help of equation (1.22) and the Prasad's multivariable I-function of \(s \) variables in Mellin-Barnes contour integral with the help of equation (1.9), changing the order of integration ans summation (which is easily seen to be justified due to the absolute convergence of the integral and the summations involved in the process) and then evaluating the resulting integral with the help of equation (3.1) and expressing the generalized hypergeometric function \(\text{_{3}F_{2}} \) in serie, use several times the following relations \(\Gamma(a)\eta = \Gamma(a + n)\) and \(a = \frac{\Gamma(a + 1)}{\Gamma(a)} \) with \(\text{Re}(a) > 0 \). Finally interpreting the result thus obtained with the Mellin-barnes contour integral, we arrive at the desired result.

The quantities \(U, V, W, X, A_r, B, A', B'\) are defined by the equations (1.14) to (1.19).

5. Particular case

If \(U = V = A_r = B = 0 \), the multivariable I-function defined by Prasad degenerate in multivariable H-function defined by Srivastava et al [9]. We have the following result.
\[
\int_0^\alpha x^{s'-1}(a - x)^{t'-1}[1 - bx(a - x)]^{\mu} R_{n_1}^{\alpha_1, \beta_1}[z X_{\eta_1}^A; E, F, g, h; p, q; \gamma', \delta'; e^{-s(X^A_{\eta_1})}] \\
S_{N_1, \ldots, N_t}^{M_1, \ldots, M_t} \left(\begin{array}{c} y_{1} X_{\eta_1, \mu_1} \\ \vdots \\ y_{t} X_{\eta_t, \mu_t} \end{array} \right) N_{0, N_1}^{\alpha_1, \beta_1} \left(\begin{array}{c} z_{1} X_{\alpha_1, \beta_1} \\ \vdots \\ z_{t} X_{\alpha_t, \beta_t} \end{array} \right) \\
H_{p, q, \gamma, \delta}^{0, n_1, \omega, X} \left(\begin{array}{c} Z_{1} X_{\eta_1, \omega_1} \\ \vdots \\ Z_{t} X_{\eta_t, \omega_t} \end{array} \right) dx = a^{s'+t'-1} \\
\sum_{G_1, \ldots, G_r} \sum_{g_1 = 0}^{M_1} \cdots \sum_{g_r = 0}^{M_r} \prod_{n' = 0}^{\infty} \prod_{K_1 = 0}^{[N_1/M_1]} \cdots \prod_{K_r = 0}^{[N_r/M_r]} \sum_{w, v, u, t, e, k_1, k_2} (-1)^{G_1 + \cdots + G_r} \delta_{g_1} G_1! \cdots \delta_{g_r} G_r! G(\eta G_1, g_1, \ldots, \eta G_r, g_r) \\
\frac{(-\mu)_n (a^2 b)^{n'}}{4^n n'} \psi(w, v, u, t, e, k_1, k_2) x_1^{p_1} \cdots x_{n'}^{p_{n'}} z_1^{\eta G_1 + \beta_1} \cdots z_r^{\eta G_r + \beta_r} y_1 \cdots y_{n'} \frac{Z_{1} X_{\eta_1 + \omega_1}}{\cdots} \frac{Z_{t} X_{\eta_t + \omega_t}}{\cdots} \\
\alpha^{RA(\gamma + \delta) + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta G_i, g_i (\alpha_i + \beta_i); \epsilon_1, \cdots, \epsilon_{s'}, \eta_{s'}} \\
(1 - s' + RA(\gamma + \delta) + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta G_i, g_i (\alpha_i + \beta_i); \epsilon_1, \cdots, \epsilon_{s'}, \eta_{s'}) \\
(1 - t' + RA(\gamma + \delta) + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta G_i, g_i (\alpha_i + \beta_i); \epsilon_1, \cdots, \epsilon_{s'}, \eta_{s'}) \\
\frac{1}{2} (s' + t' + RA(\gamma + \delta) + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta G_i, g_i (\alpha_i + \beta_i); \frac{\epsilon_1 + \eta_1}{2}, \cdots, \frac{\epsilon_1 + \eta_r}{2}) \\
\frac{1}{2} (s' + t' + RA(\gamma + \delta) + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta G_i, g_i (\alpha_i + \beta_i); \frac{\epsilon_1 + \eta_1}{2}, \cdots, \frac{\epsilon_1 + \eta_r}{2}) \\
(1 - (s' + t' + RA(\gamma + \delta) + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta G_i, g_i (\alpha_i + \beta_i); \frac{\epsilon_1 + \eta_1}{2}, \cdots, \frac{\epsilon_1 + \eta_r}{2}) \\
(1 - (s' + t' + RA(\gamma + \delta) + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta G_i, g_i (\alpha_i + \beta_i); \frac{\epsilon_1 + \eta_1}{2}, \cdots, \frac{\epsilon_1 + \eta_r}{2}) \\
\frac{1}{2} (s' + t' + RA(\gamma + \delta) + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta G_i, g_i (\alpha_i + \beta_i); \frac{\epsilon_1 + \eta_1}{2}, \cdots, \frac{\epsilon_1 + \eta_r}{2}) \\
\frac{1}{2} (s' + t' + RA(\gamma + \delta) + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta G_i, g_i (\alpha_i + \beta_i); \frac{\epsilon_1 + \eta_1}{2}, \cdots, \frac{\epsilon_1 + \eta_r}{2}) \\
(1 - n' - (s' + RA(\gamma + \delta) + \sum_{i=1}^{t} K_i (\gamma_i + \mu_i) + \sum_{i=1}^{r} \eta G_i, g_i (\alpha_i + \beta_i); \epsilon_1, \cdots, \epsilon_{s'}, \eta_{s'}) \cup A': A'' \\
B: B' \\
(5.1)
\]
6. Conclusion

In this paper we have evaluated a generalized finite integral involving the multivariable Aleph-function, a class of polynomials of several variables a sequence of functions and the multivariable I-function defined by Prasad. The integral established in this paper is of very general nature as it contains Multivariable Aleph-function, which is a general function of several variables studied so far. Thus, the integral established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

Personal adress : 411 Avenue Joseph Raynaud
Le parc Fleuri, Bat B
83140, Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE