Some Vertex Prime Graphs And A New Type Of Graph Labeling.
Mukund V.Bapat.

Abstract

In this paper we investigate some new families of vertex prime graphs. We show that the graphs kayak paddle KP(k,m,t), book graph $\theta(C_m)^n$, irregular book graph $\theta(C)^n$, C_3 snake $S(C_3, m)$, m-fold triangular snake $S(C_3, m, n)$, sunflower graph $SF(1, n)$, m-fold-petal sunflower graph $SF(m, n), (C_n)^k$ and *One point union of k cycles not of equal length $(C)^k$ has Vertex Prime label. The * indicates new families are discussed and shown to be vertex prime. We introduce a new type of graph labeling called as L-cordial labeling and show that $K_{1, n}$, path P_n, C_n, $S(C_3, m)$ are families of L-cordial graphs.

Key words: Vertex Prime labeling, L-cordial labeling, path, cycle.

AMS subject classification number (2010) :05C78

1. Introduction

All graphs considered here are simple, finite, connected, undirected. A graph $G(V, E)$ has vertex prime labeling if it’s edges can be labeled with distinct integers $1, 2, 3, \ldots |E|$ i.e. a function $f: E \rightarrow \{1, 2, \ldots |E|\}$ defined such that for each vertex with degree at least 2 the greatest common divisor of the labels on its incident edges is 1 [4]. The edge labels are the actual images under function $f: E(G) \rightarrow \{1, 2, \ldots |E|\}$. Deretsky, Lee and Mitchen [4] shows that the forests, all connected graphs, $C_2UC_n, 5C_{2m}$ have vertex prime labeling. The graph with exactly two components one of which is not an odd cycle has a vertex prime labeling. They also show that a 2-regular graph with at least two odd cycles has no vertex prime labeling. The graph admitting vertex prime labeling is called as vertex prime graph.

We introduce a new type of graph labeling called as L-cordial labeling and show that $K_{1, n}$, path P_n, C_n, $S(C_3, n)$ are families of L-cordial graphs.

We refer for terminology and symbols J.F.Harary [7] and Dynamic survey of graph labeling by Galian J.A. [5]

In this paper main results follow after some definitions.

1.1 Definition: A book graph $\theta(C_m)^n$ is made from m copies of cycle C_m that share an edge in common. It is an n page book with each page as a m-gon.

1.2 Definition: Irregular book graph $\theta(C)^n$ is a book on n pages such that not all cycles are identical polygons.

1.3 Definition: A kayak paddle $G = KP(k, m, t)$ is a graph obtained by joining cycle C_k and cycle C_m by a path of length t.

1.4 Definition: A graph $S(C_3, m)$ is a snake of length m on C_3. It is obtained from a path $p_m=(v_1, v_2, \ldots, v_{m+1})$ by joining vertices v_i and v_{i+1} to new vertex w_i (i.e. $1, 2, \ldots, m$) giving edges $q_i=(w_i, v_i)$ and edge $q_i'=(w_i, v_{i+1})$.

ISSN: 2231-5373 http://www.ijmttjournal.org
1.5 Definition: A m-fold triangular snake \(S(C_3,m,n) \) of length \(n \) is obtained from a path \(v_1,v_2,\ldots,v_n,v_{n+1} \) by joining \(v_i \) and \(v_{i+1} \) to new \(m \) vertices \(w_{ij} \) for \(i = 1,2,\ldots,n \) giving edges \((v_iw_{ij}) \) and \(e'_{ij} = (w_{ij}v_{i+1}) \), \(i = 1,2,\ldots,n \).

1.6 Definition: A unifold-petal sunflower graph \(SF(1,n) \) is a sunflower graph \(SF(n) \) obtained by a \(n \)-cycle \((v_1,v_2,\ldots,v_n,v_1) \) and creating new vertices \(w_1,w_2,\ldots,w_n \) with new edges \((v_iw_i) \) and \((w_iv_{i+1}) \). It can also be obtained from a \(C_3 \) snake \(S(C_3,n) \) by identifying end points \(v_1 \) and \(v_{n+1} \) of path \(P_{n+1} \).

1.7 Definition: A m-fold-petal sunflower graph \(SF(m,n) \) is obtained from a cycle \(v_1,v_2,\ldots,v_n,v_1 \) by joining \(v_i \) and \(v_{i+1} \) to new \(m \) vertices \(w_{ij} \) for \(i = 1,2,\ldots,n \) giving edges \(e_{ij} = (v_iw_{ij}) \) and \(e'_{ij} = (w_{ij}v_{i+1}) \), \(i = 1,2,\ldots,n \), taken modulo \(n \).

1.8 Definition: \((C_n)^k \) is a graph obtained by taking one point union of \(k \) copies of cycle \(C_n \).

1.9 Definition: \((C)^k = (C_{r_1r_2\ldots r_k})^k \) is a graph obtained by taking one point union of \(k \) cycles of lengths \(r_1, r_2, \ldots, r_k \) not all same.

2. Main Results proved:

2.1 Theorem: A book graph \(\Theta(C_m)^n \) is a vertex prime.

Proof: A book graph \(G = \Theta(C_m)^n \) has \(n(m-1)+1 \) edges. The \(n \) copies of cycle \(C_m \) are denoted by \(C_1,C_2,\ldots,C_n \). The consecutive edges on cycle \(C_k \) are \(e_{i1} = (v_{i1}v_{i2}) \). (it is common to all cycles and is denoted by \(e_1 \)) \(, e_{21}, e_{k1} \). Where \(k = 1,2,\ldots,n \) and vertex \(v_{ij} \) is the \(j \)-th vertex on \(i \)-th cycle. The edge \(e_{ij} = (v_{ij}v_{i+1}) \) is the \(j \)-th edge on \(i \)-th cycle, \(i = 1,2,\ldots,n \) and \(j = 1,2,\ldots,m \). The edge \(e_1 \) is adjacent to \(e_{k1} \) and \(e_{k2} \) for \(k = 1,2,\ldots,n \). Define \(f : E(G) \rightarrow \{1,2,\ldots|E|\} \) such that

\[
\begin{align*}
 f(e_{i1}) &= x, x = 1,2,\ldots,m. \\
 f(e_{i2}) &= m+x-1, x = 2,3,\ldots,m. \\
 f(e_{ij}) &= m+(m-1)(k-2)+x-1; k=3,4,\ldots,n \text{ and } x = 2,3,\ldots,m.
\end{align*}
\]

fig.2.1 \(\Theta(C_6)^2 \)

For any vertex the incident edges have label numbers that are consecutive positive integers or one of the incident edge is of label 1. Thus graph \(G \) is vertex prime.

2.2 Theorem: Irregular book graph \(G = \Theta(C)^p \) or \(G = \Theta(C_{r_1,r_2,\ldots r_k})^n \) has vertex prime labeling.
Proof: The different n cycles are $C_{r_1}, C_{r_2}, \ldots, C_{r_n}$. These cycles are also referred as $1^{\text{st}}, 2^{\text{nd}}, \ldots, n^{\text{th}}$ cycle on edges r_1, r_2, \ldots, r_n respectively. The edge common to all cycles is e_1. e^k_x be the x^{th} edge on k^{th} cycle where $x = 2, 3, \ldots, r_k$\ and $k = 1, 2, 3, \ldots, n$.

Define $f: E(G) \to \{1, 2, \ldots, |E|\}$ as

$$f(e^k_x) = x \quad \text{for } k=1 \text{ and } x=1, 2, \ldots, r_1$$
$$= \sum_{i=1}^{k-1} r_i - k + 1 + x \quad \text{for } k=2, 3, \ldots, n \text{ and } x=2, 3, \ldots, r_k.$$

It follows that for any vertex on any cycle $C_{r_1}, C_{r_2}, \ldots, C_{r_n}$ the incident edges have label numbers that are consecutive positive integers or one of the incident edge is of label 1. As such the graph $\theta(C)^n = \Theta(C_{r_1}, C_{r_2}, \ldots, C_{r_n})$ has vertex prime labeling.

2.3 Theorem: A kayak paddle $G= KP(k,m,t)$ is vertex prime.

Proof: A Kayak graph $G= KP(k,m,t)$ has vertex set $V(G)= \{v_1, v_2, \ldots, v_k, u_1, u_2, \ldots, u_{t-1}, w_1, w_2, \ldots, w_m\}$ where the cycle $C_k = (v_1, v_2, \ldots, v_k, v_1)$ and path of length $t = P_{t+1} = (v_1, u_1, u_2, \ldots, u_{t-1}, w_1)$ and $C_m = (w_1, w_2, \ldots, w_m, w_1)$. The edge set $E(G) = \{e_i = (v_i v_{i+1}), i = 1, 2, \ldots, k\}$ where $k+1$ is taken as 1} $\cup \{p_i = (v_i u_i), p_t = (u_t w_1) \cup \{p_{i+1} = (u_i u_{i+1}), i=1, 2, \ldots, t-2. \} \cup \{e'_i = (w_i w_{i+1}), i=1, 2, \ldots, m, v_{m+1} \text{ is taken as } v_1\}$

Define a function $f: E(G) \to \{1, 2, \ldots, |E|\}$ as

$$f(e_i) = i \text{ for } i = 1, k, f(p_i) = k+1, f(p_t) = k+1; \quad i = 1, 2, \ldots, t-1.$$
$$f(p_t) = k+t;$$
$$f(e'_i) = k+t+i; \quad i = 1, m.$$ This gives every vertex is incident with at least two edges whose labels are consecutive positive integers. Therefore G is vertex prime.

2.4 Theorem: A C_3 snake $G = S(C_3, m)$ is vertex prime.

Proof: Define $f: E(G) \to \{1, 2, \ldots, |E|\}$ as

$$f(e_i) = i \text{ for } e_i = (v_i v_{i+1}) \quad i = 1, 2, \ldots, m$$
$$f(e'_i) = m+1+2(m-i), \quad i = 1, 2, \ldots, m,$$
$$f(e_i) = f(e'_i) + 1 \quad i = 1, 2, m$$
As each vertex is incident with edges whose label are consecutive integers, the resultant labeling is vertex prime.

2.5 Theorem: A sunflower graph \(SF(n) \) \(n \geq 3 \) has vertex prime labeling.

Proof. We first obtain the vertex prime labeling of \(S(C3,n) \) as stated in theorem 1.4. By identifying the vertex \(v_1 \) with vertex \(v_{n+1} \) will give the required labeling of \(SF(n) \).

2.6 Theorem: A \(m \)-fold triangular snake \(S(C_3,m,n) \) is vertex prime.

Proof: Define \(f:E(G) \rightarrow \{1,2,\ldots,|E|\} \) as follows,

\[
f(e_i) = i, \quad i = 1,2,\ldots,n \]
\[
f(e_i') = n + 2n(j-1) + 2(n-i) + 1, \quad j = 1,2,\ldots,m \]
\[
f(e_j') = f(e_j') + 1 \]

It follows that \(S(C_3,m,n) \) is vertex prime.

2.7 Theorem: A \(m \)-fold-petel sunflower graph \(SF(m,n) \) is vertex prime.

Proof: A \(m \)-fold-petel sunflower graph \(SF(m,n) \) is obtained from \(S(C_3,m,n) \) by identifying vertex \(v_1 \) and \(v_n \) of \(S(C_3,m,n) \). Identifying these two vertices do not have any effect on vertex prime labeling. The resultant graph is vertex prime.

2.8 Theorem: The graph \(G = (C_{r1r2\ldots rk})^k \) is vertex prime.
Proof: Let the k cycles be C_j, j=1,2..k. with length r_1,r_2,...r_k respectively. The vertex common to all cycles be v_1 and e_i=(v_i,v_{i+1}) i = 1,2..n.

Define f:E(G)→{1,2,...|E|} as follows,
\[f(e_j) = r_1 + r_2 + ... + r_{(j-1)} + i \] for j = 1..k

This labeling produces at least two edges on any vertex with label as consecutive natural numbers. Resultant graph is vertex prime.

If we take r_1=r_2=r_3=...=r_k we get all cycles of same length say m. The resultant graph is \((C_m)^k\)

3. Future challenges in vertex prime labelings:

3.1 Definition A block - cutpoint graph of a graph G is a bipartite graph in which one partite set consists of the cut vertices of G and the other has a vertex b_i for each block B_i of G.

3.2 Definition A triangular cactus is a connected graph all of whose blocks are triangles. On similar lines one can define n-gonal cactus as a graph in which all of its blocks are n-gone.

We define n-gonal snake on the same lines as the triangular snakes.

3.3 We observe that n-gonal snake is vertex prime. Obtain the particular labeling to this effect.

3.4 A n-gonal cactus is vertex prime. Obtain the particular labeling to this effect.

4. We define a new type of labeling: L-cordial labeling of a graph.

A graph G(V,E) has a L-cordial labeling if there is a bijective function f:E(G)→{1,2,...|E|}. This induces the vertex label as 0 if among all the labels on the incident edges the biggest label is an even number and 1 otherwise. Further the condition is satisfied that \(v(0)\) the number of vertices labeled with 0 and \(v(1)\) the number of vertices labeled with 1 follows the condition that \(|v(1)-v(0)|\leq1\). Here isolated vertices are not considered for labeling. A graph which admits L-cordial labeling is called as L-cordial graph.

4.1 Theorem: \(K_{1,n}\) is L-cordial iff n is even.

Proof: Label the pendent edges in \(K_{1,n}\) as 1,2,3..n

Case : n = 2m m= 0,1,2... we have m edges with odd label and m edges with even label producing m vertices with label 0 and m vertices with label 1. The vertex with n degree will receive label 0. Thus \(|v(0) - v(1)|\leq1\).

Case : n = 2m + 1. (m = 0,1,2...) There will be m+1 edges with odd label number and m edges with even number as label. This will giving m+1 vertices with label 1 and m vertices with label 0. Since the biggest edge label at the n degree vertex is odd number the vertex label will be 1. The resultant labeling gives \(v(0) = m\) and \(v(1) = m+2\). which is not L-cordial labeling.

4.2 Theorem: A path \(G = P_n\) is L-cordial. n≥3

Proof: case n=2 there is no L-cordial labeling of \(P_2\).

Case n=3 \(v_1=1\) \(v_2=0\) \(v_3=0\)

\[
\begin{array}{c}
1 \\
2 \\
3
\end{array}
\]
case \(n = 2m + 1, m= 1,2,3\ldots \)

Define \(f:E(G)\rightarrow \{1,2,\ldots,|E|\} \) as follows:
\[
f(e_1)=1, f(e_2)=3, f(e_3)=2, f(e_i)=i \text{ for } i\geq 4, v(f(0))= m, v(f(1))=m+1
\]

Case \(n =2m, m = 1,2,\ldots \):

Define \(f:E(G)\rightarrow \{1,2,\ldots,|E|\} \) as follows:
\[
f(e_1)=2, f(e_2)=1, f(e_3)=3, f(e_i)=i \text{ for } i\geq 4, v(f(0))= m, v(f(1))=m
\]

The resultant labeling is L-cordial labeling.

4.3 Theorem: Cycle \(C_n \) is L-cordial.

Proof: Let the cycle be \(C_n=(v_1,v_2,\ldots,v_n,v_1) \) and any edge \(e_i=(v_iv_{i+1}), i= 1,2,\ldots,n \) (\(n+1 \) taken modulo \(n \))

case 1 : \(n \) is even.

Define \(f:E(G)\rightarrow \{1,2,\ldots,E\} \) as follows,
\[
f(e_1)=1, f(e_2)=3, f(e_3)=2, f(e_i)=i \text{ for } i = 4,5,\ldots,n.
\]

The edge with label number \(n \) is adjacent to the edge with label 1. \(v(f(0))= v(f(1))= n/2 \). For odd cycle \((n=2m+1) \) Redefine the function as \(f(e_i)=i \) for \(i = 1,2,3,\ldots,n. \) gives \(v(f(0)) + 1= v(f(1))\# \)

4.4 Theorem: \(S(C_3,m) \) is L-cordial.

Proof: Define \(f:E(G)\rightarrow \{1,2,\ldots,|E|\} \) as
\[
f(v_{i}v_{i+1})= 3(i-1)+1 \quad i=1,2,\ldots,m.
f(w_jv_j)= 2 +(j-1)3 \quad j=1,2,\ldots,m
\]
\[
f(w_jv_{j+1})= 3j \quad j=1,2,\ldots,m \quad \text{When } n \text{ is odd } v(f(1)) = v(f(0)) +1 \text{ and when } n \text{ is even } v(f(0)) = v(f(1)) +1. \text{ Thus } S(C_3,n) \text{ is L-cordial.}
\]

References:

Mukund V. Bapat
Dept. Of Mathematics
Shri. S. H. Kelkar College Devgad,
Dist- Sindhudurg.
Maharashtra, India 416613.