Resolvability in generalized double Topological Space

* R. Glory Deva Gnanam ** M. Murugalingam

Assistant Professor, * Department of Mathematics, C.S.I Jayaraj Annapackiam college, Nallur. Associate Professor (Rtd), ** Department of Mathematics, Thiruvalluvar college, Papanasam.

Abstract
In this paper the relationship between resolvability in generalized double topological spaces and pairwise resolvability in bigeneralized topological spaces has been studied.

1. Introduction:
In 1968 C.L. Chang [2] introduced the concept of intuitionistic fuzzy topological space. The concept of intuitionistic fuzzy set was introduced in 1986 by Atanassov [1] as a possible generalization of ordinary fuzzy sets. In 1997 coker [3] introduced the concept of intuitionistic fuzzy topological space. In 1989, Kandil introduced the concept of fuzzy bitopological space. The concepts of resolvability and irresolvability in a topological space were introduced and studied by E. Hewit in 1943.

2. Preliminaries
Now we introduce some basic definitions. Throughout the remainder of this paper we use the simpler notation A = (A₁, A₂) for a double set.

Definition 2.1 [4]
A double set A is an object having the form A = <x, A₁, A₂> where A₁ and A₂ are subsets of X satisfying A₁ ∩ A₂ = ∅. The set A₁ is called the set of members of A while A₂ is the set of non-members of A.

Definition 2.2 [4]
Let the double sets A and B on X be of the form A = (A₁, A₂), B = (B₁, B₂) respectively. Furthermore, let {Aₖ: j ∈ J} be an arbitrary family of double sets in X, where Aₖ = (Aₖ⁽¹⁾, Aₖ⁽²⁾). Then
(a) A ⊆ B if and only if A₁ ⊆ B₁ and A₂ ⊆ B₂
(b) A = B if and only if A ⊆ B and B ⊆ A
(c) A̅ = (A₂, A₁) denotes the complement of A
(d) ∩ Aₖ = (∩Aₖ⁽¹⁾, ∪Aₖ⁽²⁾)

(e) ∪ Aₖ = (∪Aₖ⁽¹⁾, ∩Aₖ⁽²⁾)
(f) ∅ = (∅, X) and X = (X, ∅)

Definition 2.3 [5]
A generalized double topology on a set X is a family τ of double sets in X satisfying the following axioms

T₁ : ∅ ∈ τ
T₂ : ∪ Gⱼ ∈ τ for any arbitrary family {Gⱼ : j ∈ J} ⊆ τ

In this case the pair (X, τ) is called a generalized double topological space and double set in τ is known as a double open set. The complement A̅ of an double open set A in generalized double topological space is called a double closed set in X.

Definition 2.4 [5]
Let (X, τ) be generalized double topological space and A = (A₁, A₂) be double set in X. Then the interior and closure of A are defined by

int (A) = ∪ { G: G is a double open sets in X and G ⊆ A}
cl (A) = ∩ { H: H is a double closed sets in X and A ⊆ H}

respectively.

3. Comparison of resolvability in generalized double topology with bigeneralized topology:

Definition: 3.1
A generalized topological space (X, T) is called resolvable if there exist a dense set A in (X, T) such that X − A is also a dense in (X, T). Otherwise (X, T) is called a irresolvable space.

Definition: 3.2
A bigeneralized topological space (X, T₁, T₂) is called a pair wise resolvable space if there exists a T₁ dense set A such that X − A is a T₂ dense set or a T₂ dense set B such that X − B is a T₁ dense set. Otherwise (X, T₁, T₂) is called a pair wise irresolvable space.

Definition: 3.3
A double set A in a generalized double topological space (X, T) is called dense if there exist no double closed set B such that A ⊆ B ⊆ X.
Definition: 3.4

A generalized double topological space \((X, T)\) is said to be resolvable if there exists a dense double set \(A\) in \((X, T)\) whose complement is also dense in \((X, T)\).

Definition: 3.5

A generalized double topological space \((X, T)\) is said to be irresolvable if it is not resolvable.

Theorem: 3.6

Let \((X, T)\) be a generalized double topological space. Let \(T = \{ (A_i, B_i) \}\). Let \(T_1 = \{ \text{sets formed by the first co-ordinates of elements of } T \} \), i.e., \(T_1 = \{ A_i \}\). Then \(T_1\) is a generalized topological space.

Proof:

Since \((\phi, X)\) and \((X, \phi)\) \(\in T\), \(\phi, X \in T_1\).

Also \(T_1\) is closed under arbitrary union.

Hence for any collection of open sets \(\{ (A_i, B_i) \}\) in \(T\), \(\cup (A_i, B_i) = (\cup A_i \cap B_i) \in T\). Therefore, \(\cup A_i \in T_1\), i.e., any collection of \(\{ A_i \}\) in \(T_1\) is closed under arbitrary union.

Hence \(T_1\) forms a generalized topological space.

Theorem: 3.7

Let \((X, T)\) be a generalized double topological space such that for any open set \((A_i, B_i)\), \(A_i \neq \phi\). Let \(T_1\) be the generalized topological space formed by the first co-ordinates. If \((X, T_1)\) is resolvable then \((X, T)\) is resolvable.

Proof:

Let \(T = \{ (A_i, B_i) \}\) be the generalized double topology. Let \((X, T_1)\) be resolvable where \(T_1\) is the first co-ordinate generalized topology. Then there exist \(A\) such that \(A\) and \(X - A\) are dense in \((X, T_1)\).

Since \(A\) is dense in \((X, T_1)\), \(\forall i \in X - A_i \neq X, A \subset X - A_i\), i.e., \(\forall i\) and \(A_i \neq \phi\).

That implies \(\forall i, B_i \neq X, A \supset B_i\).

Therefore, \((A, B) \subset (B_i, A_i)\) \(\forall i\) and \(B_i \neq X\) and for any \(B\) such that \(A \cap B = \phi\).

Hence \((A, B)\) is dense in \((X, T)\).

Now, since \(X - A\) is dense in \((X, T_1)\), \(\forall i\) and \(X - A_i \neq X, X - A \subset X - A_i\), i.e., \(\forall i\) and \(A_i \neq \phi, X - A \supset X - A_i\), i.e., \(A_i \subset A_i\). Hence \(\forall i\) and \(A_i \neq \phi, A \supset A_i\). Hence \((B, A) \subset (B_i, A_i)\) \(\forall i\) and \(A_i \neq \phi\). Hence \((B, A)\) is dense in \((X, T)\). Therefore, \((X, T)\) is resolvable.

Result: 3.8

The converse of the above theorem is not true.

Let \(X = \{a, b, c\}\). Let \(T = \{ \phi, ([c], [a]), ([a, b], [c]) \}\). Clearly \(T\) is a generalized double topological space. Here \((X, T)\) is resolvable space.

But \((X, T_1)\) is not resolvable.

Result: 3.9

Theorem 3.7 is not true when there is an open set \((A_1, A_2) \neq (\phi, X)\) such that \(A_1 = \phi\) consider the following example.

Let \(X = \{a, b\}\) and \(T = \{ \phi, (\phi, \{a\}), X \}\). Here \(T_1 = \{ \phi \}, X\). Hence \((X, T)\) is obviously resolvable. But \((X, T)\) is a irresolvable space.

Theorem: 3.10

Let \((X, T)\) be a generalized double topological space. Let \(T = \{ (A_i, B_i) \}\). Let \(T_2 = \{ \text{sets formed by complement of second co-ordinate of elements of } T \}\), i.e., \(T_2 = \{ X - B_i \}\). Then \(T_2\) forms a generalized topology.

Proof:

Since \((\phi, X)\) and \((X, \phi)\) \(\in T\), \(X, \phi \in T_2\).

For any arbitrary collection of sets \(\{ X - B_i \}\) in \(T_2\), \(\cup \{ X - B_i \} = X - \cap B_i\). Since \(T\) is closed under arbitrary union, \(\cup (A_i, B_i) = (\cup A_i \cap B_i) \in T\).

Hence \(\cup B_i \in T_1\). Therefore \(T_2\) is closed under arbitrary union. Hence \(T_2\) is a generalized topology.

Theorem: 3.11

Let \((X, T)\) be a generalized double topological space. Let \(T_2\) be the generalized topology formed by the complement of second co-ordinates of \(T\). If \((X, T_2)\) is resolvable then \((X, T)\) is resolvable.

Proof:

Let \(T = \{ (A_i, B_i) \}\) be the generalized double topology. Let \(T_2\) be the second co-ordinate generalized topology and \((X, T_2)\) be resolvable. Then there exist a set \(A\) such that \(A\) and \(X - A\) are dense in \((X, T_2)\).

Since \(A\) is dense in \((X, T_2)\), \(\forall i\) and \(B_i \neq X, A \subset B_i\). Therefore \(\forall i\) and \(B_i \neq X, (A, X - A) \subset (B_i, A_i)\).

Therefore \((A, X - A)\) is dense in \((X, T)\).

Also since \(X - A\) is dense in \((X, T_2)\), \(X - A \subset B_i\). Therefore \(\forall i\) and \(B_i \neq X, (A, X - A) \subset (B_i, A_i)\).

Hence \((X, T)\) is resolvable.

Result: 3.12

\((X, T)\) is resolvable does not imply that \((X, T_2)\) is resolvable, where \(T_2\) is the generalized
topology formed by the complement of second components of T. Consider the example.

Let \(X = \{ a, b, c \} \)

Let \(T = \{ \emptyset, X, \{ c \}, \{ b \}, \{ a \} \} \)

Here \((X, T)\) is resolvable. But \((X, T_2)\) is irresolvable

Definition: 3.13

The Let \((X, T)\) be generalized double topological space. Then \((X, T_1, T_2)\) is called the induced bigeneralized topological space where \(T_1\) and \(T_2\) are generalized topologies formed by the first and the complement of second co-ordinates of \(T\) respectively.

Theorem: 3.14

Let \((X, T)\) be an generalized double topological space where \(T = \{\{A_i, B_i\}\}\) such that for any non-empty open set \((A_i, B_i)\), \(A_i \neq \emptyset\). If the induced bigeneralized topological space \((X, T_1, T_2)\) is pair wise resolvable, then \((X, T)\) is resolvable.

Proof:

Let the induced bigeneralized topological space \((X, T_1, T_2)\) be pair wise resolvable. Then there exist a dense set \(A\) in \(T_1\) such that \(X - A\) is dense in \(T_2\). ie, \(\forall i\) and \(X - A_i \neq X\). And \(\forall i\) and \(B_i \neq X\). \(X - A \supsetneq B_i\). Hence \(\forall i\) and \(A_i \neq \emptyset\) and \(B_i \neq X\). \((X - A, A) \subset (B_i, A_i)\). Therefore, \((X - A, A)\) is dense in \((X, T)\)

Also \(\forall i\) and \(X - A_i \neq X\). \(A_i \supsetneq X - A_i\)

Moreover \(A_i \cap B_i = \emptyset\). Therefore \(B_i \subseteq X - A_i\). Hence \(\forall i\) and \(X - A_i \neq X\). \(A_i \supsetneq B_i\). So \((A_i, X - A) \subset (B_i, A_i)\). \(\forall i\) Hence \((A_i, X - A)\) is dense in \((X, T)\).

Therefore, \((X, T)\) is resolvable space.

Result: 3.15

Converse of the above theorem is not true. For the example, let \(X = \{ a, b, c \} \)

Let \(T = \{ \emptyset, X, \{ c \}, \{ b \}, \{ a \}, \{ \phi \} \} \).

Here \((X, T)\) is resolvable, but \((X, T_1, T_2)\) is not pair wise resolvable.

Now to find the condition when the converse of the above theorem is true.

Theorem: 3.16

Let \((X, T)\) be a resolvable space. Let \((\rho, \lambda)\) be a double dense set whose complement is also dense. Let \(T = \{A_i, B_i\}\) be the collection of open sets. If \(A_i \subseteq \rho \subseteq B_i\) \(\forall i\) or \(A_i \subseteq \lambda \subseteq B_i\) \(\forall i\) then \((X, T_1, T_2)\) is pair wise resolvable.

Proof:

Let \(A_i \subseteq \rho \subseteq B_i\) \(\forall i\). Since \((\rho, \lambda)\) dense in \((X, T), (\rho, \lambda) \subset (B_i, A_i) \forall i\)

Therefore \(\forall i\) \(\rho \subset B_i\) or \(\lambda \supset A_i\)

ie, \(\forall i\), \(\rho \supset B_i\) or \(\lambda \subset A_i\). But \(\rho \subseteq B_i\) \(\forall i\).

Hence \(\forall i\) \(\lambda \subset A_i\) \(\forall i\). \(\lambda \subset X - A_i\) \(\forall i\).

Hence \(X - \lambda \subset X - A_i \forall i\).

That implies \(X - \lambda \subset X - A_i \forall i\).

Hence \(X - \lambda\) is dense in \(T_1\).

Now since \((\lambda, \rho)\) is dense in \((X, T), (\lambda, \rho) \subset (B_i, A_i) \forall i\)

Therefore \(\forall i\), \(\lambda \subset B_i\) or \(\rho \supset A_i\)

ie, \(\forall i\), \(\lambda \subset B_i\) or \(\rho \subset A_i\). But \(A_i \subseteq \rho \forall i\). Hence \(\lambda \supset B_i \forall i\).

So \(\lambda\) is dense in \(T_2\). Hence \((X, T_1, T_2)\) is pair wise resolvable.

The proof is similar if \(A_i \subseteq \lambda \subseteq B_i\) \(\forall i\)

References:

