Face Integer Cordial Labeling of Graphs

M. Mohamed Sheriff** 1, A. Farhana Abbas** 2 and P. Lawrence Rozario Raj***

1 P.G. and Research Department of Mathematics, Hajee Karutha Rowther Howdia College, Uthamapalayam - 625 533, Tamil Nadu, India.

2 Research Scholar, School of Mathematics, Madurai Kamraj University, Madurai - 625 021, Tamil Nadu, India.

** P.G. and Research Department of Mathematics, St. Joseph’s College, Tiruchirappalli - 620 002, Tamil Nadu, India.

Abstract - In this paper, we have introduced and investigated the face integer cordial labeling of wheel Wn fan fα, triangular snake Tn, double triangular snake DTn, star of cycle Cn and DS(Bn,n).

Keywords - Integer cordial labeling, face integer cordial labeling, face integer cordial graph.

I. INTRODUCTION

We begin with simple, finite, planar, undirected graph. A (p,q) planar graph G means a graph G(V,E), where V is the set of vertices with |V| = p, E is the set of edges with |E| = q and F is the set of interior faces of G with |F| = number of interior faces of G. For standard terminology and notations related to graph theory we refer to Harary [3]. A graph labeling is the assignment of unique identifiers to the edges and vertices of a graph. Graph labelings have enormous applications within mathematics as well as to several areas of computer science and communication networks. For a dynamic survey on various graph labeling problems along with an extensive bibliography we refer to Gallian [2].

A mapping f : V(G) → {0,1} is called binary vertex labeling of G and f(v) is called the label of the vertex v of G under f. If for an edge e = uv, the induced edge labeling f* : E(G) → {0,1} is given by f*(e) = |f(u)−f(v)|. Then v(i) is number of vertices having label i under f and e(i) is number of edges having label i under f*. A binary vertex labeling f of a graph G is called a cordial labeling of G if |v0(0) − v1(1)| ≤ 1 and |e0(0) − e1(1)| ≤ 1. A graph G is cordial if it admits cordial labeling. In [1], Cahit introduced the concept of cordial labeling of graph.

A product cordial labeling of a graph G with vertex set V is a function f from V to {0,1} such that if each edge uv is assigned a label f(u)f(v) then (i) the number of vertices labeled with 0 and the number of vertices labeled with 1 differ by at most 1 and (ii) the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a product cordial labeling is called a product cordial graph. The concept of product cordial labeling of a graph was introduced by Sundaram et al. [8].

For graph G, the edge labeling function is defined as f : E(G) → {0,1} and induced vertex labeling function f* : V(G) → {0,1} is given as if e1,e2,...,en are the edges incident to vertex v then f*(v) = f(e1)f(e2)...f(en). Let us denote v(i) is the number of vertices of G having label i under f and e(i) is the number of edges of G having label i under f for i = 0,1. f is called edge product cordial labeling of graph G if |v0(0) − v1(1)| ≤ 1 and |e0(0) − e1(1)| ≤ 1. A graph G is called edge product cordial if it admits edge product cordial labeling. In [9], Vaidya et al. introduced the concept of edge product cordial labeling of graph.

Let a and b be two integers. If a divides b means that there is a positive integer k such that b = ak. It is denoted by ab. If a does not divide b, then we denote a|b. Let G = (V(G), E(G)) be a simple graph and f : V(G)→{1,2,...,|V(G)|} be a bijection. For each edge uv, assign the label 1 if f(u)f(v) or f(v)f(u) and the label 0 otherwise. The function f is called a divisor cordial labeling if |v0(0) − v1(1)| ≤ 1. A graph with a divisor cordial labeling is called a divisor cordial graph. Varatharajan et al. [10] introduced the concept of divisor cordial labeling of graphs.

For a planar graph G, the vertex labeling function is defined as g : V(G)→{0,1} and g(v) is called the label of the vertex v of G under g, induced edge labeling function g* : E(G)→{0,1} is given as if e = uv then g*(e) = g(u)g(v) and induced face labeling function g** : F(G)→{0,1} is given as if v1,v2,...,vn and e1,e2,...,en are the vertices and edges of face f, then g**(f) = g(v1)g(v2)...g(vn)g(e1)g(e2)...g(en). g(0) is the number of vertices of G having label i under g, e(i) is the number of edges of G having label i under g** for i = 0,1. g is called face product cordial labeling of graph G if |v0(0)−v1(1)| ≤ 1, |e0(0)−e1(1)| ≤ 1 and |f0(0)−f1(1)| ≤ 1. A graph G is face product cordial if it admits face product cordial labeling. Lawrence et al. introduced the concept of face product cordial labeling of graphs in [5] and they proved fan, M(Pn), S(Pn) except for odd n, T(Pn), Tn, Hn, Sn except for even n and one vertex union of mCn and nCn are face product cordial graph.

For a planar graph G, the edge labeling function is defined as g : E(G)→{0,1} and g(e) is called the label of the edge e of G under g, induced vertex labeling function g* : V(G)→{0,1} is given as if e1,e2,...,en are the edges incident to vertex v, then
A vertex labeling function is $g: V(G) \to \{0, 1\}$ is given as if v_1, v_2, \ldots, v_n and e_1, e_2, \ldots, e_n are the vertices and edges of face f then $g^*(f) = g(v_1)g(v_2)\ldots g(v_n)g(e_1)g(e_2)\ldots g(e_n)$. $v_g(i)$ is the number of vertices of G having label i under g^*, $e_g(i)$ is the number of edges of G having label i under g^* and $f_g(i)$ is the number of interior faces of G having label i under g^* for $i = 1, 2$. A planar graph G is face integer cordial if it admits face integer cordial labeling.

For a planar graph G, an edge labeling function is defined as $g: E \to [-\frac{p}{2}, \frac{p}{2}]$ or $[-\frac{p}{2}, \ldots, \frac{p}{2}]$ as p is even or odd be an injective map, which induces vertex labeling function $g^*: V(G) \to \{0, 1\}$ such that $g^*(v) = 1$, if $\sum g(e_i) \geq 0$ and $g^*(v) = 0$ otherwise, where e_1, e_2, \ldots, e_n are the adjacent edges of the vertex v and face labeling function $g^**: F(G) \to \{0, 1\}$ such that $g^**(f) = 1$, if $g^*(f) = g(e_1) + g(e_2) + \ldots + g(e_n) \geq 0$ and $g^**(f) = 0$ otherwise, where e_1, e_2, \ldots, e_n are the edges of face f.

Let G be a simple connected graph with p vertices. Let $f: V \to [-\frac{p}{2}, \frac{p}{2}]$ or $[-\frac{p}{2}, \ldots, \frac{p}{2}]$ as p is even or odd be an injective map, which induces an edge labeling f^* such that $f(uv) = 1$, if $f(u)+f(v) \geq 0$ and $f(uv) = 0$ otherwise. Let $e(f)$ be number of edges labeled with i, where $i = 0$ or 1. f is said to be integer cordial if $|e(0)−e(1)| \leq 1$. A graph G is called integer cordial if it admits an integer cordial labeling. Here $[−x, \ldots, x] = \{t / t \text{ is an integer} \text{ and } |t| \leq x\}$ and $[−x, \ldots, x] = \{−x, \ldots, x\}−\{0\}$.

In [7], Nicholas et al. introduced the concept of integer cordial labeling of graphs and proved that some standard graphs such as cycle C_n. Path P_n. Wheel graph W_n. $n \geq 3$. Star graph $K_{1,n}$. Helm graph H_n. Closed helm graph CH_n. Wheel W_n. $n \geq 3$. Star graph $K_{1,n}$. Helm graph H_n. Closed helm graph CH_n are integer cordial, K_n is not integer cordial, $K_{1,n}$ is integer cordial iff n is even and $K_{n,n}$ is integer cordial for any n, where M is a perfect matching of $K_{n,n}$.

Motivated by the concept of face product cordial labeling, face edge product cordial labeling and integer cordial labeling, we introduce two new types of labeling such as face integer cordial and face integer cordial edge labeling of graph. For a planar graph G, the vertex labeling function is defined as $g: V \to [-\frac{p}{2}, \frac{p}{2}]$ or $[-\frac{p}{2}, \ldots, \frac{p}{2}]$ as p is even or odd be an injective map, which induces an edge labeling function $g^*: E(G) \to \{0, 1\}$ such that $g^*(uv) = 1$, if $g(u)+g(v) \geq 0$ and $g^*(uv) = 0$ otherwise and face labeling function $g^{**}: F(G) \to \{0, 1\}$ such that $g^{**}(f) = 1$, if $g^*(f) = g(v_1) + g(v_2) + \ldots + g(v_n) \geq 0$ and $g^{**}(f) = 0$ otherwise, where v_1, v_2, \ldots, v_n are the vertices of face f. g is called face integer cordial labeling of graph G if $|e_g(0)−e_g(1)| \leq 1$ and $|f_g(0)−f_g(1)| \leq 1$. $e_g(i)$ is the number of edges of G having label i and $f_g(i)$ is the number of interior faces of G having label i for $i = 1, 2$. A planar graph G is face integer cordial if it admits face integer cordial labeling.

In [6], Mohamed Sherif et al proved wheel graph, fan graph, friendship graph, triangular snake, alternative triangular snake, star of cycle, degree splitting graph of bistar, vertex switching of cycle, pendant vertex switching of path, helm, closed helm, middle graph of path and total graph of path are face integer edge cordial graph.

The present work is focused only on face integer cordial labeling of some new families of graphs. The face integer cordial labeling of wheel W_n, fan F_n, triangular snake T_n, double triangular snake DT_n, star of cycle C_n and DS(B_n) is presented. The brief summaries of definition which are necessary for the present investigation are provided below.

Definition : 1.1

A wheel W_n is a graph with $n+1$ vertices, formed by connecting a single vertex to all the vertices of cycle C_n. It is denoted by $W_n = C_n + K_1$.

Definition : 1.2

A triangular snake T_n is obtained from a path u_1, u_2, \ldots, u_n by joining u_i and u_{i+1} to a new vertex v_i for $i = 1, 2, \ldots, n−1$.

Definition : 1.3

The friendship graph F_n is one-point union of n copies of cycles C_3.

Definition : 1.4

The join of two graphs G and H is a graph $G \cup H$ with $V(G \cup H) = V(G) \cup V(H)$ and $E(G \cup H) = E(G) \cup E(H)$ or $\{uv : u \in V(G) \text{ and } v \in V(H)\}$. The graph $P_n + K_1$ is called a fan of n vertices and is denoted by f_n.
Definition 1.5

Let G be a graph with two or more vertices than the total graph T(G) of graph G is the graph whose vertex set is V(G)∪E(G) and two vertices are adjacent whenever they are either adjacent or incident in G.

Definition 1.6

Let G be a graph with vertex set V = S1∪S2∪…∪Sk/T where each Si is a set of vertices having at least two vertices of the same degree and T = V\cup S. The degree splitting graph of G denoted by DS(G) is obtained from G by adding vertices wi, w2, w3, …, wn and joining to each vertex of Si for 1 ≤ i ≤ n.

Remark 1.1

Any unicyclic integer cordial graphs are face integer cordial graphs.

Remark 1.2

Every planar graph G is always a subgraph of the face integer cordial graph G∪G.

II. MAIN THEOREMS

Theorem 2.1

The wheel Sn is a face integer cordial graph for n ≥ 3.

Proof

Let v be the apex vertex, v1, v2, …, vn be rim vertices, e1, e2, …, en be edges and f1, f2, …, fn be interior faces of the wheel Sn where e1 = vv, for i = 1, 2, …, n, ei = vi+1v, for i = 1, 2, …, n−1, e2n = vn+1v, f1 = vv, f2 = vi+1v, for i = 1, 2, …, n−1 and fn = vn+1v.

Let G be the wheel graph Sn.

Then |V(G)| = n+1, |E(G)| = 2n and |F(G)| = n.

Case (i) n is odd.

Let n = 2k+1.

Define g : V(G) → [-k, …, k] as follows:

\[g(v) = 1 \]
\[g(v_i) = -i \quad \text{for } 1 \leq i \leq \frac{n+1}{2} \]
\[g(v_{\frac{n+1}{2}}) = i+1 \quad \text{for } 1 \leq i \leq \frac{n-1}{2} \]

Then induced edge labels are

\[g*(e_i) = 1 \]
\[g*(e_i) = 0 \quad \text{for } 2 \leq i \leq \frac{n+1}{2} \]
\[g*(e_i) = 1 \quad \text{for } n+3 \leq i \leq n \]
\[g*(e_{n+1}) = 0 \quad \text{for } 1 \leq i \leq \frac{n+1}{2} \]
\[g*(e_{n+1}) = 1 \quad \text{for } n+3 \leq i \leq n \]

Also the induced face labels are

\[g**(f_i) = 0 \quad \text{for } 1 \leq i \leq \frac{n-1}{2} \]
\[g**(f_i) = 1 \quad \text{for } \frac{n+1}{2} \leq i \leq n \]

In view of the above defined labeling pattern, we have

\[e_i(0) = e_i(1) = n \quad \text{and} \quad f_i(1) = f_i(0) + 1 = \frac{n+1}{2}. \]

Then |e_i(0) − e_i(1)| ≤ 1 and |f_i(0) − f_i(1)| ≤ 1.

Thus the wheel Sn is the face integer cordial for n is odd.

Case 2: n is even.

Let n = 2k.

Define g : V(G) → [-k, …, k] as follows:

\[g(v) = 0 \]
\[g(v_i) = -i \quad \text{for } 1 \leq i \leq \frac{n}{2} \]
\[g(v_{\frac{n}{2}}) = i \quad \text{for } 1 \leq i \leq \frac{n}{2} \]

Then induced edge labels are

\[g*(e_i) = 0 \quad \text{for } 1 \leq i \leq \frac{n}{2} \]
\[g*(e_i) = 1 \quad \text{for } \frac{n+2}{2} \leq i \leq n \]
\[g*(e_{n+1}) = 0 \quad \text{for } 1 \leq i \leq \frac{n}{2} \]
\[g*(e_{n+1}) = 1 \quad \text{for } \frac{n+2}{2} \leq i \leq n \]

Also the induced face labels are

\[g**(f_i) = 0 \quad \text{for } 1 \leq i \leq \frac{n}{2} \]
\[g**(f_i) = 1 \quad \text{for } \frac{n+2}{2} \leq i \leq n \]

In view of the above defined labeling pattern, we have

\[e_i(0) = e_i(1) = n \quad \text{and} \quad f_i(1) = f_i(0) + 1 = n. \]

Then |e_i(0) − e_i(1)| ≤ 1 and |f_i(0) − f_i(1)| ≤ 1.

Thus the wheel Sn is the face integer cordial for n is even.

Hence the wheel Sn is the face integer cordial graph for n ≥ 3.

Example 2.1

The wheel S3 and its face integer cordial labeling is shown in figure 2.1.

![Figure 2.1](http://www.iijmttjournal.org)
Theorem 2.2

The fan f_n is face integer cordial graph for $n \geq 2$.

Proof:

Let $v_1,v_2,\ldots,v_n, e_1,e_2,\ldots,e_{2n-1}$ and f_1,f_2,\ldots,f_{n-1} be the vertices, edges and an interior faces of f_n, where $e_i=v_{i+1}$ for $i=1,2,\ldots,n$ and $e_{n+i}=v_{n+i+1}$ for $i=1,2,\ldots,n-1$.

Let G be the fan graph f_n. Then $|V(G)| = n+1$, $|E(G)| = 2n-1$ and $|F(G)| = n-1$.

Case (i): n is odd and $n = 2k+1$.

Define $g : V(G) \rightarrow \{-(k+1),\ldots,(k+1)\}$ as follows.

$$g(v_i) = 1 + i \quad \text{for} \quad 1 \leq i \leq \frac{n-1}{2}$$

$$g(v_{n+i}) = -i \quad \text{for} \quad 1 \leq i \leq \frac{n+1}{2}$$

Then induced edge labels are

$$g^*(e_i) = 1 \quad \text{for} \quad 1 \leq i \leq \frac{n+1}{2}$$

$$g^*(e_i) = 0 \quad \text{for} \quad \frac{n+3}{2} \leq i \leq n$$

$$g^*(e_{n+i}) = 1 \quad \text{for} \quad 1 \leq i \leq \frac{n-1}{2}$$

$$g^*(e_{n+i}) = 0 \quad \text{for} \quad \frac{n+1}{2} \leq i \leq n-1$$

Also the induced face labels are

$$g^{**}(f_i) = 1 \quad \text{for} \quad 1 \leq i \leq \frac{n}{2}$$

$$g^{**}(f_i) = 0 \quad \text{for} \quad \frac{n+2}{2} \leq i \leq n-1$$

Proof:

$$g^{**}(f_i) = 0 \quad \text{for} \quad \frac{n+2}{2} \leq i \leq n-1$$

In view of the above defined labeling pattern, we have $e_i = e_i(0)+1 = n$ and $f_i = f_i(0)+1 = \frac{n}{2}$.

Thus $|e_i(0) - e_i(1)| \leq 1$ and $|f_i(0) - f_i(1)| \leq 1$.

Therefore the fan f_n is the face integer cordial graph for n is odd.

Case (ii): n is even and $n = 2k$.

Define $g : V(G) \rightarrow \{-k,\ldots,k\}$ as follows.

$$g(v_i) = 0$$

$$g(v_i) = i \quad \text{for} \quad 1 \leq i \leq \frac{n}{2}$$

Then induced edge labels are

$$g^*(e_i) = 1 \quad \text{for} \quad 1 \leq i \leq \frac{n}{2}$$

$$g^*(e_i) = 0 \quad \text{for} \quad \frac{n+1}{2} \leq i \leq n$$

$$g^*(e_{n+i}) = 1 \quad \text{for} \quad 1 \leq i \leq \frac{n}{2}$$

$$g^*(e_{n+i}) = 0 \quad \text{for} \quad \frac{n+1}{2} \leq i \leq n-1$$

Also the induced face labels are

$$g^{**}(f_i) = 1 \quad \text{for} \quad 1 \leq i \leq \frac{n}{2}$$

$$g^{**}(f_i) = 0 \quad \text{for} \quad \frac{n+1}{2} \leq i \leq n-1$$

Theorem 2.3

Triangular snake T_n is face integer cordial graph for $n \geq 2$.

Proof:

Let $v_1,v_2,\ldots,v_n,u_1,u_2,\ldots,u_{n-1}$ be vertices, e_1,e_2,\ldots,e_{3n-3} be edges and f_1,f_2,\ldots,f_{n-1} interior faces of T_n, where $e_{2i-1} = v_i u_i$, $e_{2i} = u_i u_{i+1}$ and $e_{3n-3} = v_n V_{1}$ for $i = 1,2,\ldots,n-1$ and $f_i = v_i u_i V_{1}$ for $i = 1,2,\ldots,n-1$.

Let G be the graph T_n. Then $|V(G)| = 2n-1$, $|E(G)| = 3n-3$ and $|F(G)| = n-1$.

Define $g : V(G) \rightarrow \{-n,\ldots,n\}$ as follows.

Case (i): n is odd.

$$g(u_i) = i \quad \text{for} \quad 1 \leq i \leq \frac{n-1}{2}$$

$$g(u_i) = \frac{n-1}{2} - i \quad \text{for} \quad \frac{n+1}{2} \leq i \leq n-1$$

$$g(v_i) = \frac{n-1}{2} + i \quad \text{for} \quad 1 \leq i \leq \frac{n-1}{2}$$

$$g(v_i) = 0 \quad \text{for} \quad \frac{n+1}{2} \leq i \leq n$$

Then induced edge labels are

$$g^*(e_i) = 1 \quad \text{for} \quad 1 \leq i \leq n-1$$

$$g^*(e_i) = 0 \quad \text{for} \quad \frac{n+1}{2} \leq i \leq 2n-2$$

$$g^*(e_{3n-3}) = 1 \quad \text{for} \quad 1 \leq i \leq \frac{n-1}{2}$$

$$g^*(e_{3n-3}) = 0 \quad \text{for} \quad \frac{n+1}{2} \leq i \leq n-1$$

Also the induced face labels are

$$g^{**}(f_i) = 1 \quad \text{for} \quad 1 \leq i \leq \frac{n-1}{2}$$

$$g^{**}(f_i) = 0 \quad \text{for} \quad \frac{n+1}{2} \leq i \leq n-1$$

http://www.ijmttjournal.org
In view of the above defined labeling pattern we have $e_i(0) = e_i(1) = \frac{3n - 3}{2}$ and $f_i(0) = f_i(1) = \frac{n - 1}{2}$.

Then $|e_i(0) - e_i(1)| \leq 1$ and $|f_i(0) - f_i(1)| \leq 1$.

Thus T_n is face integer cordial graph for n is odd.

Case (ii) : n is even.

- $g(u_i) = i$ for $1 \leq i \leq \frac{n - 2}{2}$
- $g(u_i) = 0$ for $i = \frac{n}{2}$
- $g(v_i) = -i + \frac{n}{2}$ for $\frac{n + 2}{2} \leq i \leq n - 1$
- $g(v_i) = i + \frac{n}{2}$ for $1 \leq i \leq \frac{n}{2}$
- $g(v_i) = -i - 1$ for $\frac{n + 2}{2} \leq i \leq n$

Then induced edge labels are

- $g^*(e_i) = 1$ for $1 \leq i \leq n - 1$
- $g^*(e_i) = 0$ for $n \leq i \leq 2n - 2$
- $g^*(e_{2n-2i}) = 1$ for $1 \leq i \leq \frac{n}{2}$
- $g^*(e_{2n-2i}) = 0$ for $\frac{n + 2}{2} \leq i \leq n - 1$

Also the induced face labels are

- $g^{**}(f_i) = 1$ for $1 \leq i \leq \frac{n}{2}$
- $g^{**}(f_i) = 0$ for $\frac{n + 2}{2} \leq i \leq n - 1$

In view of the above defined labeling pattern, we have

$e_i(1) = e_i(0) + 1 = \frac{3n - 2}{2}$ and $f_i(1) = f_i(0) + 1 = \frac{n + 1}{2}$.

Then $|e_i(0) - e_i(1)| \leq 1$ and $|f_i(0) - f_i(1)| \leq 1$.

Thus T_n is face integer cordial graph for n is even.

Hence T_n is face integer cordial graph for $n \geq 2$.

Example 2.3

The graph T_3 and its face integer cordial labeling is shown in figure 2.3.

![Figure 2.3](image)

Theorem : 2.4

Double triangular snake DT_n is a face integer cordial graph for $n \geq 3$.

Proof.

Let $v_0, v_1, v_2, \ldots, v_n$, $u_1, u_2, \ldots, u_{n-1}$, $w_1, w_2, \ldots, w_{n-1}$ be vertices, $e_1, e_2, \ldots, e_{3n-5}$ be edges and $f_1, f_2, \ldots, f_{3n-5}$ be an interior faces of DT_n, where $e_{2n-1} = v_i u_{n-1}$, $e_{2n} = u_{n-1} v_i$. $e_{2n+1} = v_i v_{i+1}$, $e_{3n+2i-4} = v_i w_i$, and $e_{3n+2i-3} = w_i v_i$ for $i = 1, 2, \ldots, n - 1$, $f_i = v_i w_{i+1} v_i$ for $i = 1, 2, \ldots, n - 1$ and $f_{n-1} = v_{i+1} w_i v_i$ for $i = 1, 2, \ldots, n - 1$.

Let G be the double triangular snake DT_n. Then $|V(G)| = 3n - 2$, $|E(G)| = 5n - 5$ and $|F(G)| = 2n - 2$.

Case (i) : n is odd and $k = \frac{3n - 3}{2}$.

Define $g : V(G) \rightarrow [-k, \ldots, k]$ as follows

- $g(u_i) = i$ for $1 \leq i \leq \frac{n - 1}{2}$
- $g(u_i) = \frac{n - 1}{2} - i$ for $\frac{n + 1}{2} \leq i \leq n - 1$
- $g(v_i) = \frac{n - 1}{2} + i$ for $1 \leq i \leq \frac{n - 1}{2}$
- $g(v_i) = 0$ for $i = \frac{n + 1}{2}$
- $g(v_i) = -i - 1$ for $\frac{n + 3}{2} \leq i \leq n$
- $g(w_i) = n - i + 1$ for $1 \leq i \leq \frac{n - 1}{2}$
- $g(w_i) = \left(\frac{n - 1}{2}\right) - i$ for $\frac{n + 1}{2} \leq i \leq n - 1$

Then induced edge labels are

- $g^*(e_i) = 1$ for $1 \leq i \leq n - 1$
- $g^*(e_i) = 0$ for $n \leq i \leq 2n - 2$
- $g^*(e_{2n-2i}) = 1$ for $1 \leq i \leq \frac{n}{2}$
- $g^*(e_{2n-2i}) = 0$ for $\frac{n + 2}{2} \leq i \leq n - 1$

Also the induced face labels are

- $g^{**}(f_i) = 1$ for $1 \leq i \leq \frac{n}{2}$
- $g^{**}(f_i) = 0$ for $\frac{n + 2}{2} \leq i \leq n - 1$

In view of the above defined labeling pattern, we have

$e_i(1) = e_i(0) + 1 = \frac{5n - 5}{2}$ and $f_i(1) = f_i(0) + 1 = -\frac{n - 1}{2}$.

Then $|e_i(0) - e_i(1)| \leq 1$ and $|f_i(0) - f_i(1)| \leq 1$.

Thus the graph DT_n is face integer cordial graph for n is odd.

Case 2 : n is even and $k = \frac{3n - 2}{2}$.

Define $g : V(G) \rightarrow [-k, \ldots, k]$ as follows

- $g(u_i) = i - \frac{3n - 2}{2}$ for $1 \leq i \leq \frac{n - 2}{2}$
- $g(u_i) = \frac{n - 1}{2} - i$ for $\frac{n + 1}{2} \leq i \leq n - 1$
- $g(v_i) = \frac{n - 1}{2} + i$ for $1 \leq i \leq \frac{n - 1}{2}$
- $g(v_i) = 0$ for $i = \frac{n + 1}{2}$
- $g(v_i) = -i - 1$ for $\frac{n + 3}{2} \leq i \leq n$
- $g(w_i) = n - i + 1$ for $1 \leq i \leq \frac{n - 1}{2}$
- $g(w_i) = \left(\frac{n - 1}{2}\right) - i$ for $\frac{n + 1}{2} \leq i \leq n - 1$

In view of the above defined labeling pattern, we have

$e_i(0) = e_i(1) = \frac{5n - 5}{2}$ and $f_i(0) = f_i(1) = -\frac{n - 1}{2}$.

Then $|e_i(0) - e_i(1)| \leq 1$ and $|f_i(0) - f_i(1)| \leq 1$.

Thus the graph DT_n is face integer cordial graph for n is odd.
Theorem 2.5

The friendship graph F_n is face integer cordial graph for $n \geq 3$.

Proof: Let v_1, v_2, \ldots, v_{2n}, e_1, e_2, \ldots, e_{2n}, f_1, f_2, \ldots, f_n be the vertices, edges, and interior faces of F_{2n}, where $e_{2i-1} = v_{2i-1}v_{2i}$, $e_{2i} = v_{2i}v_{2i+1}$ and $f_i = v_{2i}v_{2i+1}v_{2i+2}$, for $1 \leq i \leq n$. Let G be the friendship graph F_{2n}. Then $|V(G)| = 2n+1$, $|E(G)| = 3n$ and $|F(G)| = n$.

Define $g: V(G) \rightarrow [-n, \ldots, n]$ as follows

Case (i) : n is odd

$g(v) = 0$ for $1 \leq i \leq n$
$g(v_1) = 1$ for $1 \leq i \leq n$
$g(v_{2n}) = -1$ for $1 \leq i \leq n$

Then induced edge labels are

$g^*(e_i) = 0$ for $1 \leq i \leq n-1$
$g^*(e_i) = 1$ for $1 \leq i \leq 2n-2$
$g^*(e_{2n-2i}) = 0$ for $1 \leq i \leq n-1$
$g^*(e_{2n-2i}) = 1$ for $1 \leq i \leq n-1$

Also the induced face labels are

$g^{**}(f_i) = 0$ for $1 \leq i \leq n-2$
$g^{**}(f_i) = 1$ for $1 \leq i \leq n-1$
$g^{**}(f_{n-1+2i}) = 0$ for $1 \leq i \leq n-1$
$g^{**}(f_{n-1+2i}) = 1$ for $1 \leq i \leq n-1$

In view of the above defined labeling pattern, we have $|e_i(0) - e_i(1)| = 1$ and $|f_i(0) - f_i(1)| = 1$.

Then $|e_i(0) - e_i(1)| \leq 1$ and $|f_i(0) - f_i(1)| \leq 1$.
Hence F_n is face integer cordial graph.

Case (ii) : n is even

$g(v) = 0$ for $1 \leq i \leq 2n$
$g(v_{2n}) = 1$ for $1 \leq i \leq n$
$g(v_{2n}) = 1$ for $1 \leq i \leq n$

Then induced edge labels are

$g^*(e_i) = 1$ for $1 \leq i \leq 3n-2$
$g^*(e_i) = 0$ for $1 \leq i \leq 3n$.

Also the induced face labels are

$g^{**}(f_i) = 1$ for $1 \leq i \leq n+1$
$g^{**}(f_i) = 0$ for $1 \leq i \leq 3n$.

In view of the above defined labeling pattern, we have $|e_i(0) - e_i(1)| = 1$ and $|f_i(0) - f_i(1)| = 1$.

Thus $|e_i(0) - e_i(1)| \leq 1$ and $|f_i(0) - f_i(1)| \leq 1$.
Hence F_n is face integer cordial graph for n is even.

Hence F_n is face integer cordial graph for $n \geq 3$.
Example 2.5

The graph F_1 and its face integer cordial labeling is shown in figure 2.5.

![Figure 2.5](image-url)

Theorem 2.6

$DS(B_{n,n})$ is face integer cordial graph for $n \geq 2$.

Proof.

Let $u,v,u_1,u_2,\ldots,u_n,v_1,v_2,\ldots,v_n$ and e_1,e_2,\ldots,e_{2n+1} be the vertices and edges of $B_{n,n}$.

Now $V(B_{n,n}) = V_1 \cup V_2$, where $V_1 = \{u,v\}$ and $V_2 = \{u_1,u_2,\ldots,u_n,v_1,v_2,\ldots,v_n\}$. In order to obtain $DS(B_{n,n})$ is obtained from $B_{n,n}$ by adding the vertex w_1 to V_1 and w_2 to V_2.

$u,v,u_1,u_2,\ldots,u_n,v_1,v_2,\ldots,v_n,w_1,w_2,e_1,e_2,\ldots,e_{2n+3}$ and f_1,f_2,\ldots,f_2n be the vertices, edges and an interior faces of $DS(B_{n,n})$, where $e_i = uu_i$ for $i = 1,2,\ldots,n$, $e_{n+i} = uv$, $e_{n+i+1} = vv$, $e_{2n+1} = w_1u$, $e_{n+i+1} = w_1v$ for $i = 1,2,\ldots,n$, $e_{2n+2} = w_2u$, $e_{2n+3} = w_2v$ and $f_i = uu_iw_iu_i$, $f_{n+1} = vv$ for $i = 1,2,\ldots,n$, $f_{2n+1} = uuvw_iu_i$, and $f_{2n} = uuvw_iu_i$.

Let G be a graph $DS(B_{n,n})$. Then $|V(G)| = 2n+4$, $|E(G)| = 4n+3$ and $|F(G)| = 2n$.

Define $g : V(G) \rightarrow \{-(n+2),\ldots,(n+2)\}$ as follows.

$f(u) = 2$

$f(v) = -1$

$f(w_1) = 2$

$f(w_2) = -(n+2)$

$f(u_i) = n+3 - i$ for $1 \leq i \leq n$

$f(v_i) = -(i+1)$ for $1 \leq i \leq n$.

Then induced edge labels are

$g^*(e_i) = 1$ for $1 \leq i \leq n$

$g^*(e_{n+i}) = 1$

$g^*(e_{n+i+1}) = 1$ for $1 \leq i \leq n$

$g^*(e_{2n+1}) = 1$

$g^*(e_{2n+1}) = 0$ for $1 \leq i \leq n+2$

Also the induced face labels are

$g^*(f_1) = 1$ for $1 \leq i \leq n-1$

$g^*(f_{n+1}) = 0$ for $1 \leq i \leq n+1$

In view of the above defined labeling pattern, we have $e_1(0) = e_1(1) = 2n+2$ and $f_1(1) = f_1(0) = n$.

Then $|e_1(0)-e_1(1)| \leq 1$ and $|f_1(0)-f_1(1)| \leq 1$.

Hence $DS(B_{n,n})$ is the face integer cordial for $n \geq 3$.

Example 2.6

The graph $DS(B_{1,3})$ and its face integer cordial labeling is shown in figure 2.6.

![Figure 2.6](image-url)

Theorem 2.7

The star of cycle C_n is face integer cordial graph for $n \geq 3$.

Proof.

Let $v_1,v_2,\ldots,v_n, v_{11},v_{12},\ldots,v_{1n}, v_{21},v_{22},\ldots,v_{2n},\ldots,$ $v_{n1},v_{n2},\ldots,v_{nn},e_1,e_2,\ldots,e_{2n},e_{11},e_{12},\ldots,e_{1n},e_{21},e_{22},\ldots,e_{2n},\ldots,$ $e_{n1},e_{n2},\ldots,e_{nn}$ and f_1, f_2, \ldots, f_{2n} be vertices, edges and an interior faces of the star of cycle C_n. v_1,v_2,\ldots,v_n be the vertices of central cycle C_n, $v_{11},v_{12},\ldots,v_{1n}$ be the vertices of the cycle C_1, where $1 \leq i \leq n$ and v_1 is adjacent to the i^{th} vertex of the central cycle C_n, $e_i = v_i v_{i+1}$, for $1 \leq i \leq n-1$, $e_n = v_n v_1$, for $1 \leq i \leq n$, $e_{i} = v_{i+1} v_{i+1}$, for $1 \leq i \leq n$ and $1 \leq j \leq n-1$, $e_{nn} = v_nv_1$, for $1 \leq i \leq n$, $f_1 = v_1 v_2 \ldots v_n$ and $f_{2n} = v_{11} v_{22} \ldots v_{nn}$ for $1 \leq i \leq n$.

Let G be the star of cycle C_n.

Then $|V(G)| = n(n+1)$, $|E(G)| = n(n+2)$ and $|F(G)| = n+1$.

Case (i) : n is even and $k = \frac{n(n+1)}{2}$

Define $g : V(G) \rightarrow \{-[i-1],\ldots,k\}$ as follows.

$g(v_i) = 1$, for $1 \leq i \leq n$

$g(v_i) = 1$, for $1 \leq i \leq n+1$

And $1 \leq j \leq n$.

Then induced edge labels are

$g^*(e_i) = 1$, for $1 \leq i \leq n+1$

$g^*(e_{nn}) = 0$, for $2 \leq i \leq \frac{n+1}{2}$

$g^*(e_{nn}) = 1$, for $\frac{n+3}{2} \leq i \leq n$

$g(e_0) = 0$, for $1 \leq i \leq \frac{n+1}{2}$

$g(e_0) = 0$, for $\frac{n+3}{2} \leq i \leq n$

Also the induced face labels are

$g^*(f_1) = 1$
\[g^*(f_{i+1}) = 0 \quad \text{for} \quad 1 \leq i \leq \frac{n+1}{2} \]
\[g^*(f_{i+1}) = 1 \quad \text{for} \quad \frac{n+3}{2} \leq i \leq n \]

In view of the above defined labeling pattern, we have
\[e_i(1) = e_i(0) + 1 = \frac{n(n+2)+1}{2} \quad \text{and} \quad f_i(1) = f_i(0) + 1 = \frac{n+1}{2}. \]

Then \[|e_i(0) - e_i(1)| \leq 1 \] and \[|f_i(0) - f_i(1)| \leq 1 \]

Hence G is face integer cordial graph for \(n \geq 3 \).

Example : 2.7

The star of cycle \(C_n \) and its face integer cordial labeling of graph is shown in figure 2.7.

![Figure 2.7](http://www.ijmttjournal.org)

Theorem 2.8

\(T(P_n) \) is face integer cordial graph for \(n \geq 3 \).

Proof:

Let \(v_1, v_2, ..., v_n, u_1, u_2, ..., u_{n-1} \) be vertices, \(e_1, e_2, ..., e_{3n-5} \) be edges and \(f_1, f_2, ..., f_{3n-3} \) interior faces of \(T(P_n) \), where \(e_{2i+1} = v_i u_i, e_{2i+2} = u_i v_{i+1} \) for \(i = 1, 2, ..., n-1 \), \(e_{3n-3i} = u_i u_{i+1} \) for \(i = 1, 2, ..., n-2 \), \(f_i = v_i v_{i+1} v_i \) for \(i = 1, 2, ..., n-1 \) and \(f_{n-1+i} = u_i v_i u_{i+1} u_i \) for \(i = 1, 2, ..., n-2 \).

Let \(G \) be the graph \(T(P_n) \).

Then \[|V(G)| = 2n-1, |E(G)| = 4n-5 \quad \text{and} \quad |F(G)| = 2n-3. \]

Define \(g : V(G) \rightarrow [-n, ..., n] \) as follows.

Case (i) : \(n \) is odd.

\[g(u_i) = i \quad \text{for} \quad 1 \leq i \leq \frac{n-1}{2} \]
\[g(u_i) = \frac{n-1}{2} - i \quad \text{for} \quad \frac{n+1}{2} \leq i \leq n \]
\[g(v_i) = 0 \quad \text{for} \quad 1 \leq i \leq \frac{n-1}{2} \]
\[g(v_i) = \frac{n-1}{2} + i \quad \text{for} \quad \frac{n+1}{2} \leq i \leq n \]

Also the induced face labels are

\[g^*(f_{i+1}) = 1 \]
\[g^*(f_{i+1}) = 0 \quad \text{for} \quad 1 \leq i \leq \frac{n}{2} \]
\[g^*(f_{i+1}) = 1 \quad \text{for} \quad \frac{n+2}{2} \leq i \leq n \]

In view of the above defined labeling pattern, we have
\[e_i(0) = e_i(1) = \frac{n(n+2)}{2} \quad \text{and} \quad f_i(1) = f_i(0) + 1 = \frac{n+2}{2}. \]

Then \[|e_i(0) - e_i(1)| \leq 1 \] and \[|f_i(0) - f_i(1)| \leq 1 \]

Hence \(G \) is face integer cordial graph for \(n \) is even.
The graph $T(P_n)$ and its face integer cordial labeling is shown in figure 2.8.

Example 2.8

In this paper, we prove wheel W_n, fan f_n, triangular snake T_n, double triangular snake DT_n, star of cycle C_n and $DS(B_{3n})$ are face integer cordial graph. In the subsequent paper, we will prove vertex switching of cycle, pendant vertex switching of path, helm, closed helm, middle graph of path, total graph of path and subdivision of rim edges of wheel.

REFERENCES

[6]. M. Mohamed Sheriff and A. Farhana Abbas, Face Integer Edge Cordial Labeling of Graphs, communicated.

