\(I_{gm} \) - Closed Sets

M. Navaneethakrishnan\(^1\) S. Alwarsamy\(^2\) and S. Balamurugan\(^3\)

\(^1\)Department of Mathematics, Kamaraj College, Thoothukudi - 628 003.
\(^2\)Department of Mathematics, Government Arts and Science College, Kovilpatti.
\(^3\)Department of Mathematics, Government Arts College, Melur - 625106.
Tamil Nadu, India.

Abstract

We define \(I_{gm} \) - closed sets in \((X, M, I)\) and discuss their properties.

Keywords: \(m \) - Space, \(g_m \) - closed, \(g_m \) - open, \(mg \) - closed, \(mg \) - open, \(I_{gm} \) - closed, \(I_{gm} \) - open, I - locally \(*\) - closed, m - locally \(*\) - closed.

1 Introduction and preliminaries

An ideal \(I \) on a topological space \((X, \tau)\) is a non empty collection of subsets of \(X \) which satisfies (i) \(A \in I \) and \(B \subset A \) implies \(B \in I \) and (ii) \(A, B \in I \) implies \(A \cup B \in I \). Given a topological space \((X, \tau)\) with an ideal \(I \) on \(X \) and if \(P(X) \) is the set of all subsets of \(X \), a set operator \((\cdot)^* : P(X) \rightarrow P(X)\) called a local function \([5]\) of \(A \) with respect to \(\tau \) and \(I \) is defined as follows: for \(A \subset X, A^*(X, \tau) = \{x \in X/U \cap A \notin I, \text{ for every } U \in \tau(x)\}, \) where \(\tau(x) = \{U \in \tau/x \in U\}. \)
A Kuratowski closure operator $cl^*(\cdot)$ for a topology $\tau^*(I, \tau)$ called the $*-$ topology, finer than τ, is defined by $cl^*(A) = A \cup A^*(I, \tau)$ [8]. When there is no confusion we will simply write A^* for $A^*(I, \tau)$ and τ^* for $\tau^*(I, \tau)$. If I is an ideal on X, then (X, τ, I) is called an ideal space. A subset A of an ideal space (X, τ, I) is said to be $*-$ closed [4] if $A^* \subset A$ and $*-$ dense in itself if $A \subset A^*$ [3]. A subset A of an ideal space (X, τ, I) is said to be I_g- closed [2] if $A^* \subset U$ whenever $A \subset U$ and U is open. A subset A of an ideal space (X, τ, I) is said to be $I-$ locally $*-$ closed [7] if there exists an open set U and a $*-$ closed set F such that $A = U \cap F$.

By a space, we always mean a topological space (X, τ) with no separation properties assumed. If $A \subset X, cl(A)$ and $int(A)$ will respectively, denote the closure and interior of A in (X, τ) and $int^*(A)$ will denote the interior of A in (X, τ^*). A subset A of a topological space (X, τ) is said to be a $g-$ closed set [6] if $cl(A) \subset U$ whenever $A \subset U$ and U is open. A subset A of a topological space (X, τ) is said to be a $g-$ open set if $X - A$ is a $g-$ closed set. A sub collection M of $P(X)$ is called a minimal structure [1] on X, if (i) $\phi, X \in M$ and (ii) M is closed under finite intersection.

(X, M) is called a minimal space. If I is an ideal on X, (X, M, I) is called an ideal minimal space. If $U \in M$, U is said to be a $m-$ open set. The complement of a $m-$ open set is called $m-$ closed set. We set $mint(A) = \cup\{U \in M/U \subset A\}$ and $mcl(A) = \cap\{F/A \subset F \text{ and } X - F \in M\}$. A subset A of (X, M) is said to be $mg-$ closed [1] if $mvl(A) \subset U$ whenever $A \subset U$ and $U \in M$. The complement of a $mg-$ closed set is called $mg-$ open set.
2 I_{gm} - closed sets

If (X, M) is a m-space, we denote the topology generated by M by τ_m. If (X, M, I) is an ideal m-space, then (X, τ_m, I) is an ideal topological space. We denote the \star-topology generated by I and τ_m on X by τ_m^\star.

For a subset A of X, we denote the local function of A with respect to I and τ_m by A^\star and closure of A in τ_m and τ_m^\star by $cl(A)$ and $cl^\star(A)$ respectively.

A subset A of an ideal m-space (X, M, I) is said to be I_{gm}-closed if $A^\star \subset U$ whenever $A \subset U$ and $U \in M$. The complement of an I_{gm}-closed set is called an I_{gm}-open set.

A subset A of (X, τ_m) is said to be g_m-closed if $cl(A) \subset U$ whenever $A \subset U$ and $U \in M$. The complement of a g_m-closed set is called a g_m-open set.

Since $cl^\star(A) \subset cl(A) \subset mcl(A)$ and $M \subset \tau_m$ we have the following diagram.

\[
\begin{array}{cccc}
m - closed & \rightarrow & closed & \rightarrow \star - closed \\
\downarrow & \downarrow & \downarrow \\
mg - closed & \rightarrow & g - closed & \rightarrow I_g - closed \\
\downarrow & \downarrow \\
gm - closed & \rightarrow I_{gm} - closed \\
\end{array}
\]

If $M = \tau$, a topology on X, then $\tau_m = \tau$, $cl(A) = mcl(A)$ and hence the concepts $mg - closed$, $g - closed$ and $gm - closed$ are coincide and the concepts $I_g - closed$ and $I_{gm} - closed$ are coincide.

The Theorems 2.1 and 2.2 gives characterizations for I_{gm}-closed sets.

Theorem 2.1. A subset A of an ideal m-space (X, M, I) is I_{gm}-closed if and only if $cl^\star(A) \subset U$ whenever $A \subset U$ and $U \in M$.

Proof. Suppose that A is I_{gm}-closed. Then $A^\star \subset U$ whenever $A \subset U$ and $U \in M$. Therefore, $A \cup A^\star \subset U$ whenever $A \subset U$ and $U \in M$. (ie) $cl^\star(A) \subset U$
whenever $A \subset U$ and $U \in M$. Converse follows from the fact that $A^* \subset \text{Cl}^*(A)$.

For a subset A of an ideal m–space (X, M, I), define $\Lambda_m(A) = \cap\{U \in M/ A \subset U\}$. A is said to be a Λ_m–set if $\Lambda_m(A) = A$.

Theorem 2.2. A subset A of an ideal m–space (X, M, I) is I_{gm}–closed if and only if $\text{cl}^*(A) \subset \Lambda_m(A)$.

Proof. Suppose A is I_{gm}–closed. Let $U \in M$ be such that $A \subset U$. Then $\text{cl}^*(A) \subset U$. Therefore $\text{cl}^*(A) \subset \cap\{U \in M/ A \subset U\}$. (ie) $\text{cl}^*(A) \subset \Lambda_m(A)$.

Conversely, suppose $\text{cl}^*(A) \subset \Lambda_m(A)$. If $A \subset U$ and $U \in M$ then $\Lambda_m(A) \subset U$ and hence $\text{cl}^*(A) \subset U$. Therefore A is I_{gm}–closed.

The Theorem 2.3 gives some properties of I_{gm}–closed sets and Example 2.4 shows that the converse need not be true.

Theorem 2.3. Let (X, M, I) be an ideal m–space If $A \subset X$ is I_{gm}–closed, then the following properties hold.

(a) $\text{cl}^*(A) – A$ contains no non empty m–closed set.

(b) $A^* – A$ contains no non empty m–closed set.

Proof. Let A be I_{gm}–closed set.

(a). Suppose $V \subset \text{cl}^*(A) – A$ and V is m–closed. since A is I_{gm}–closed and $X – V$ is a m–open, set containing A, $\text{cl}^*(A) \subset X – V$. Hence $V \subset X – \text{Cl}^*(A)$. Since $V \subset \text{Cl}^*(A)$ and $V \subset \text{cl}^*(A) – A$, we get $V = \phi$.

(b) If A is I_{gm}–closed, then by (a) $\text{cl}^*(A) – A$ contains no non empty closed set. But $\text{cl}^*(A) – A = A^* – A$. Therefore (b) follows.

Example 2.4. Let $X = \{a, b, c\}, M = \{\phi, \{a\}, \{b\}, \{b, c\}, X\}$ and $I = \{\phi, \{a\}\}$. Then $\tau_m = \{\phi, \{a\}, \{b\}\{a, b\}, \{b, c\}, X\}$

If $A = \{b\}$, then $A^* – A = \{c\}$, which contains no non empty m–closed sets. But A is not I_{gm}–closed.
Theorem 2.5. Suppose a subset A of an ideal m – space is both I_{gm} – closed and m – open. Then it is \star – closed.

Proof. Since A is I_{gm} – closed. $A \subset A$ and $A \in M$ implies that $cl^*(A) \subset A$. Hence A is \star – closed.

Theorem 2.6. Let (X, M, I) be an ideal m – space. Then every subset of X is I_{gm} – closed if and only if every m – open set is \star – closed.

Proof. Suppose every subset of X is I_{gm} – closed. Let U be an m – open set. Since $U \subset U$, from the definition of I_{gm} – closed sets, $U^* \subset U$ and hence $cl^*(U) \subset U$. Therefore U is \star – closed.

Conversely, suppose that every m – open set is \star – closed. If A is any subset of X and $A \subset U$, U is m – open, then $A^* \subset U^* \subset cl^*(U) = U$ and hence A is I_{gm} – closed.

Theorem 2.7. If A is an I_{gm} – closed subset of an ideal m – space (X, M, I), then the following properties are equivalent.

(a) A is a \star – closed set

(b) $cl^*(A) – A$ is a m – closed set

(c) $A^* – A$ is a m – closed set.

Proof. (a) \Rightarrow (b). If A is \star – closed then $cl^*(A) = A$ and hence $cl^*(A) – A = \phi$, which is m – closed.

(b) \Rightarrow (c). Since $cl^*(A) – A = A^* – A, A^* – A$ is m – closed.

(c) \Rightarrow (a). Suppose $A^* – A$ is m – closed. Since A is I_{gm} – closed, by Theorem 2.3, $A^* – A$ contains no non empty m – closed set. Therefore, $A^* – A = \phi$ and hence $A^* \subset A$. So A is \star – closed.

Theorem 2.8. Let (X, M, I) be an ideal m – space. Then a subset A of X is \star – closed if and only if $A^* – A$ is m – closed and A is I_{gm} – closed.
Proof. Suppose A is \star–closed. Then $A^* - A = cl^*(A) - A = \phi$, which is m–closed. Also every \star–closed set is I_{gm}–closed. Hence A is I_{gm}–closed.

Conversely, suppose $A^* - A$ is m–closed and A is I_{gm}–closed. Then by Theorem 2.7, A is \star–closed.

Theorem 2.9. Let (X, M, I) be an ideal m–space. If A is \star–dense in itself, then $A^* = mcl(A^*) = mcl(A)$

Proof. Clearly, $A^* \subset mcl(A^*)$. It $x \notin A^*$, then there exist $U \in \tau_m$ such that $x \in U$ and $U \cap A \in I$. Since τ_m is generated by M, there exist $V \in M$ such that $x \in V \subset U$. Since $V \cap A \cup U \cap A \in I$, we have $V \cap A \in I$. If $x \in V$, then $x \in U$ and $U \cap A \in I$ and hence $x \notin A^*$. Therefore $V \cap A^* = \phi$. So $x \notin mcl(A^*)$. This proves that $mcl(A^*) \subset A^*$. Therefore $A^* = mcl(A^*)$. Since A is \star–dense in itself, $A \subset A^*$ and hence $mcl(A) \subset mcl(A^*)$.

On the other hand, $A^* \subset cl^*(A) \subset cl(A) \subset mcl(A)$ and hence $mcl(A^*) \subset mcl(A)$. Therefore $mcl(A^*) = mcl(A)$.

In general I_{gm}–closed sets need not be mg–closed. The following Theorem 2.10 gives a condition where it is mg–closed.

Theorem 2.10. Let (X, M, I) be an ideal m–space and A is a subset of X. If A is \star–dense in itself and I_{gm}–closed, then A is mg–closed.

Proof. A is \star–dense in itself. So $A \subset A^*$. Therefore, $cl^*(A) = A \cup A^* = A^*$. Suppose $U \in M$ and $A \subset U$. Since A is I_{gm}–closed, by Theorem 2.1, $cl^*(A) \subset U$. Therefore $A^* \subset U$. Since A is \star–dense in itself, by Theorem 2.9, $A^* = mcl(A)$. Therefore $mcl(A) \subset U$ and hence A is mg–closed.

Theorem 2.11. Let (X, M, I) be an ideal m–space and A, B be subsets of X. If A is I_{gm}–closed and $A \subset B \subset cl^*(A)$, then B is also I_{gm}–closed.
Proof. Suppose $B \subset U$ and U is m–open. Then $A \subset U$. Since A is I_{gm}–closed, $\text{cl}^*(A) \subset U$. Since $A \subset B \subset \text{cl}^*(A)$, $\text{cl}^*(B) \subset \text{cl}^*(\text{cl}^*(A)) = \text{cl}^*(A)$.

Hence $\text{cl}^*(A) = \text{cl}^*(B)$. Therefore, $\text{cl}^*(B) \subset U$ and hence B is I_{gm}–closed.

Theorem 2.12. Union of two I_{gm}–closed sets is an I_{gm}–closed set.

Proof. Let (X, M, I) be an ideal m–space and let A and B be I_{gm}–closed sets in X. Suppose $A \cup B \subset U$ and U is m–open. Since A is I_{gm}–closed and $A \subset U$, we have $\text{cl}^*(A) \subset U$. Similarly $\text{cl}^*(B) \subset U$. Therefore $\text{cl}^*(A \cup B) = \text{cl}^*(A) \cup \text{cl}^*(B) \subset U$. Hence $A \cup B$ is I_{gm}–closed.

The following Example 2.13 shows that intersection of two I_{gm}–closed sets need not be I_{gm}–closed.

Example 2.13. Let $X = \{a, b, c\}$, $M = \{\phi, \{a\}, \{b, c\}, X\}$ and $I = \{\phi, \{a\}\}$. Then $\tau_m = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$.

Let $A = \{a, b\}$ and $B = \{b, c\}$. Since X is the only m–open set containing A, A is I_{gm}–closed. Since, $B^* = \{b, c\}$, B is \star–closed and hence I_{gm}–closed. Now $A \cap B = \{b\}$, which is m–open and $(A \cap B)^* = \{b, c\}$. Therefore $A \cap B$ is not I_{gm}–closed.

Theorem 2.14. Let (X, M, I) be an ideal m–space and A, B be subsets of X. If $A \subset B \subset A^*$ and A is I_{gm}–closed, then B is mg–closed.

Proof. Since $A \subset B \subset A^*$, we have $A^* \subset B^* \subset (A^*)^* = A^*$. Therefore $A^* = B^*$ and hence A and B are \star–dense in itself. Since $A \subset B \subset A^* \subset \text{cl}^*(A)$ and A is I_{gm}–closed, by Theorem 2.11, B is I_{gm}–closed. Since B is \star–dense in itself and I_{gm}–closed, by Theorem 2.10, B is mg–closed.

Theorem 2.15. Let (X, M, I) be an ideal m–space and $I = \{\phi\}$. Then A is I_{gm}–closed if and only if A is mg–closed.
Proof. Since $I = \{\phi\}$, $cl(A) = cl^*(A)$, for every subset of X. Therefore $cl^*(A) \subset U$ if and only if $cl(A) \subset U$. Therefore A is $I_{gm} - closed$ if and only if A is $mg - closed$.

Theorem 2.16. Let (X, M, I) be an ideal m - space. For every $x \in X$, the set $X - \{x\}$ is $I_{gm} - closed$ or $m - open$.

Proof. Suppose $X - \{x\}$ is not $m - open$. Then X is the only $m - open$ set contains $X - \{x\}$ and $(X - \{x\})^* \subset X$. Hence $X - \{x\}$ is $I_{gm} - closed$.

The following theorem 2.17, gives a characterization for $I_{gm} - open$ sets.

Theorem 2.17. Let (X, M, I) be an ideal m - space and $A \subset X$. Then A is $I_{gm} - open$ if and only if $F \subset int^*(A)$ whenever F is $m - closed$ and $F \subset A$.

Proof. Suppose A is $I_{gm} - open$ and $F \subset A$, F is $m - closed$. Then $X - A \subset X - F$, $X - F$ is $m - open$ and $X - A$ is $I_{gm} - closed$. Therefore $cl^*(X - A) \subset X - F$. Therefore $F \subset X - cl^*(X - A) = int^*(A)$.

Conversely, suppose $F \subset int^*(A)$ whenever $F \subset A$ and F is $m - closed$. If $X - A \subset U$ and U is $m - open$, then $X - U \subset A$ and $X - U$ is $m - closed$. Therefore, by hypothesis, $X - U \subset int^*(A)$ and hence $cl^*(X - A) = X - int^*(A) \subset U$. Therefore $X - A$ is $I_{gm} - closed$ and hence A is $I_{gm} - open$.

Since every $m - closed$ set is $I_{gm} - closed$, every $m - open$ set is $I_{gm} - open$.

Theorem 2.18. Let (X, M, I) be an ideal m - space and A, B be subsets of X. If A is $I_{gm} - open$ and $int^*(A) \subset B \subset A$, then B is $I_{gm} - open$.

The proof follows from the Theorem 2.11.

Theorem 2.19. Intersection of two $I_{gm} - open$ sets is an $I_{gm} - open$ set.

The proof follows from the Theorem 2.12.

Theorem 2.20. If a subset A of an ideal m - space (X, M, I) is $I_{gm} - closed$ then $A \cup (X - A^*)$ is also $I_{gm} - closed$.
Proof. Suppose A is $I_{gm} - closed$. If $A \cup (X - A^*) \subset U$ and U is $m - open$, then $X - U \subset X - [A \cup (X - A^*)]$ and hence $X - U$ is $m - closed$. Since A is $I_{gm} - closed$, by Theorem 2.3, $X - U = \phi$ and hence $X = U$. Therefore X is the only $m - open$ set containing $A \cup (X - A^*)$ and hence $A \cup (X - A^*)$ is $I_{gm} - closed$.

Theorem 2.21. Let (X,M,I) be an ideal $m - space$. Then the following are equivalent.

(a) Every $I_{gm} - closed$ set $\star - closed$

(b) Every singleton of X is either $m - closed$ or $\star - open$.

Proof. $(a) \Rightarrow (b)$. Let $x \in X$. If $\{x\}$ is not $m - closed$, then $X - \{x\}$ is not $m - open$. Therefore X is the only $m - open$ set containing $X - \{x\}$ and $X - \{x\}$ is $I_{gm} - closed$ set. By hypothesis, $X - \{x\}$ is $\star - closed$ and hence $\{x\}$ is $\star - open$.

$(b) \Rightarrow (a)$. Let A be an $I_{gm} - closed$ set and $x \in A^*$. We have to prove that $x \in A$.

Case (i). If $\{x\}$ is $m - closed$ and $x \notin A$, then $A \subset X - \{x\}$ and $X - \{x\}$ is $m - open$. Since A is $I_{gm} - closed$, $A^* \subset X - \{x\}$ and hence $x \notin A^*$, which is a contradiction.

Case (ii). If $\{x\}$ is $\star - open$, since $x \in A^*$ we have $x \in cl^*(A)$ and hence $\{x\} \cap A \neq \phi$. (ie) $x \in A$. Therefore $A^* \subset A$ and hence A is $\star - closed$.

A subset A of an ideal $m - space (X,M,I)$ is said to be $m - locally \star - closed$ if there exist a $m - open$ set U and a $\star - closed$ set F of (X,τ^*_m) such that $A = U \cap F$. The set A is said to be $m - locally$ closed if there exist a $m - open$ set U and a closed set F of (X,τ_m) such that $A = U \cap F$.

If $I = \{\phi\}$, then the concept $m - locally \star - closed$ sets coincide with $m - locally$ closed set.
Theorem 2.22. Let \((X, M, I)\) be an ideal \(m\) – space and \(A\) be a subset of \(X\). Then the following statements are equivalent.

(a) \(A\) is \(m\) – locally \(*\) – closed

(b) \(A = U \cap \text{cl}^*(A)\), for some \(m\) – open set \(U\).

Proof. (a) \(\Rightarrow\) (b). If \(A\) is \(m\) – locally \(*\) – closed then there exist a \(m\) – open set \(U\) and a \(*\) – closed set \(F\) such that \(A = U \cap F\). Clearly \(A \subset U \cap \text{cl}^*(A)\). On the other hand, since \(F\) is \(*\) – closed, \(A \subset F\) implies that \(\text{cl}^*(A) \subset \text{cl}^*(F) = F\) and so \(U \cap \text{cl}^*(A) \subset U \cap F = A\). Therefore \(A = U \cap \text{cl}^*(A)\)

(b) \(\Rightarrow\) (a) is clear.

Theorem 2.23. Let \((X, M, I)\) be an ideal \(m\) – space and \(A\) be a \(m\) – locally \(*\) – closed subset of \(X\). Then the following properties hold.

(a) \(A^* - A\) is closed

(b) \((X - A^*) \cup A = A \cup (X - \text{cl}^*(A))\) is open

(c) \(A \subset \text{int}(A \cup (X - A^*))\)

(d) \(A\) is \(I\) – locally \(*\) – closed in \((X, \tau^*_m)\).

Proof. (a) Since \(A\) is \(m\) – locally \(*\) – closed, by Theorem 2.21, \(A = U \cap \text{cl}^*(A)\), for some \(m\) – open set \(U\). Then, \(A^* - A = A^* \cap (X - A) = A^* \cap [X - (U \cap \text{cl}^*(A))]\)

\[A^* \cap [(X - U) \cup (X - \text{cl}^*(A))] = (A^* \cap (X - U)) \cup (A^* \cap (X - \text{cl}^*(A))) = A^* \cap (X - U),\] which is closed (b). \(X - (A^* - A) = X - [A^* \cap (X - A)] = (X - A^*) \cup A\)

By (a), \((X - A^*) \cup A\) is open. Also \((X - A^*) \cup A = A \cup (X - \text{cl}^*(A))\).

(c) Since \(A\) is \(m\) – locally \(*\) – closed, by (b), \(A \cup (X - A^*)\) is open.

Therefore \(A \cup (X - A^*) \subset \text{int}[A \cup (X - A^*)]\) and hence \(A \subset \text{int}[A \cup (X - A^*)]\).

(d) The proof follows from the fact that every \(m\) – open set is open.
Theorem 2.24. Let \((X,M,I)\) be an ideal \(m\) – space and \(A\) is a \(m\) – locally \(*\) – closed and \(I\) – dense subset of \(X\). Then \(A\) is open.

Proof. If \(A\) is \(m\) – locally \(*\) – closed, then by Theorem 2.23(d), \(A\) is \(I\) – locally \(*\) – closed. Therefore, by Theorem 3.1 (e)[7], \(A \subset \text{int}[A \cup (X - A^*)]\). Since \(A\) is \(I\) – dense, \(A^* = X\) and so \(A \subset \text{int}(A)\). Therefore \(A\) is open.

References

