Selberg integral involving the S generalized Gauss's hypergeometric function, a class of polynomials, the multivariable Aleph-function and the multivariable I-function

F.Y. AYANT

1 Teacher in High School, France

ABSTRACT

In the present paper we evaluate the modified Selberg integral involving the product of a multivariable Aleph-function, a multivariable I-function defined by Prasad [2], the S generalized Gauss hypergeometric function and general class of polynomials of several variables. The importance of the result established in this paper lies in the fact they involve the Aleph-function of several variables which is sufficiently general in nature and capable to yielding a large of results merely by specializing the parameters therein. We will study two particular cases.

Keywords: Multivariable Aleph-function, general class of polynomials, modified Selberg integral, S generalized Gauss hypergeometric function, multivariable I-function, multivariable H-function.

2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1. Introduction and preliminaries.

In this paper, we evaluate the modified Selberg integral involving the product of a multivariable Aleph-function, a multivariable I-function defined by Prasad [2], The S generalized Gauss hypergeometric function and general class of polynomials of several variables.

The function Aleph of several variables generalize the multivariable I-function recently study by C.K. Sharma and Ahmad [3], itself is an a generalisation of G and H-functions of multiple variables defined by Srivastava et al [7]. The multiple Mellin-Barnes integral occurring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

We define : \(N(z_1, \cdots, z_r) = N_{p_1, q_1, \cdots, p_r, q_r}^{m_1, n_1, \cdots, m_r, n_r} \)

\[
\begin{pmatrix}
 z_1 \\
 \vdots \\
 z_r
\end{pmatrix}
\]

\[
[([\alpha_j^{(1)}, \cdots, \alpha_j^{(r)}]_{1, n} + \tau_i(\alpha_j^{(1)}, \cdots, \alpha_j^{(r)}))_{n+1, p_i}] \\
[([\beta_j^{(1)}, \cdots, \beta_j^{(r)}]_{m+1, q_i})_{m+1, q_i}]
\]

\[
\int \cdots \int \psi(s_1, \cdots, s_r) \prod_{k=1}^{r} \theta_k(s_k) d^{s_k} s_1 \cdots d s_r
\]

(1.1)

with \(\omega = \sqrt{-1} \)

\[
\psi(s_1, \cdots, s_r) = \frac{\prod_{j=1}^{n} \Gamma(1 - a_j + \sum_{k=1}^{r} \alpha_j^{(k)} s_k)}{\sum_{i=1}^{R} \prod_{j=n+1}^{p_i} \Gamma(a_j - \sum_{k=1}^{r} \alpha_j^{(k)} s_k) \prod_{j=1}^{n} \Gamma(1 - b_j + \sum_{k=1}^{r} \beta_j^{(k)} s_k)}
\]

(1.2)
and $\theta_k(s_k) = \frac{\prod_{j=1}^{m_k} \Gamma(d_j^{(k)} - \delta_j^{(k)} s_k) \prod_{j=1}^{n_k} \Gamma(1 - c_j^{(k)} + \gamma_j^{(k)} s_k)}{\sum_{i=1}^{R(k)} \prod_{j=m_k+1}^{q_i} \Gamma(1 - d_j^{(i(k))} + \delta_j^{(i(k))} s_k) \prod_{j=n_k+1}^{p_i} \Gamma(1 - c_j^{(i(k))} - \gamma_j^{(i(k))} s_k)}$ \hspace{1cm} (1.3)

Suppose, as usual, that the parameters $\alpha_j, j = 1, \cdots, p; \beta_j, j = 1, \cdots, q$;
$c_j^{(k)}; j = 1, \cdots, n_k; c_j^{(i(k))}, j = n_k + 1, \cdots, p_i$;
$d_j^{(k)}, j = 1, \cdots, m_k; d_j^{(i(k))}, j = m_k + 1, \cdots, q_i$;

with $k = 1 \cdots, r, i = 1, \cdots, R, i(k) = 1, \cdots, R(k)$

are complex numbers, and the α's, β's, γ's and δ's are assumed to be positive real numbers for standardization purpose such that

$$U_i^{(k)} = \sum_{j=1}^{n} \alpha_j^{(k)} + \tau_i \sum_{j=n+1}^{p_i} \alpha_j^{(i(k))} + \sum_{j=1}^{n_k} \gamma_j^{(k)} + \tau_i \sum_{j=n_k+1}^{p_i} \gamma_j^{(i(k))} - \tau_i \sum_{j=1}^{q_i} \beta_j^{(k)} - \sum_{j=1}^{m_k} \delta_j^{(k)}$$

$$- \tau_i \sum_{j=m_k+1}^{q_i} \delta_j^{(i(k))} \leq 0 \hspace{1cm} (1.4)$$

The real numbers τ_i are positives for $i = 1$ to R, $\tau_i^{(k)}$ are positives for $i(k) = 1$ to $R(k)$

The contour L_k is in the s_k-p plane and run from $\sigma - \infty$ to $\sigma + \infty$ where σ is a real number with loop, if necessary, ensure that the poles of $\prod_{j=1}^{m_k} \Gamma(d_j^{(k)} - \delta_j^{(k)} s_k)$ with $j = 1$ to m_k are separated from those of $\prod_{j=1}^{n_k} \Gamma(1 - c_j^{(k)} + \gamma_j^{(k)} s_k)$ with $j = 1$ to n_k to the left of the contour L_k. The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H-function given by as:

$$|\arg z_k| < \frac{1}{2} A_i^{(k)} \pi, \text{ where}$$

$$A_i^{(k)} = \sum_{j=1}^{n} \alpha_j^{(k)} - \tau_i \sum_{j=n+1}^{p_i} \alpha_j^{(i(k))} + \sum_{j=1}^{m_k} \delta_j^{(k)} - \tau_i \sum_{j=n_k+1}^{p_i} \gamma_j^{(i(k))}$$

$$+ \sum_{j=1}^{m_k} \delta_j^{(k)} - \tau_i \sum_{j=m_k+1}^{q_i} \delta_j^{(i(k))} > 0, \text{ with } k = 1, \cdots, r, i = 1, \cdots, R, i(k) = 1, \cdots, R(k) \hspace{1cm} (1.5)$$

The complex numbers z_i are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the the asymptotic expansion in the following convenient form:

$N(z_1, \cdots, z_r) = 0(|z_1|^{\alpha_1}, \cdots, |z_r|^{\alpha_r}), \text{ max}(|z_1|, \cdots, |z_r|) \to 0$

$N(z_1, \cdots, z_r) = 0(|z_1|^{\beta_1}, \cdots, |z_r|^{\beta_r}), \text{ min}(|z_1|, \cdots, |z_r|) \to \infty$
where, with $k = 1, \cdots, r: \alpha_k = \min \{\text{Re}(d_j^{(k)}/\delta_j^{(k)})\}, j = 1, \cdots, m_k$ and

$$\beta_k = \max \{\text{Re}((c_j^{(k)} - 1)/\gamma_j^{(k)})\}, j = 1, \cdots, n_k$$

Serie representation of Aleph-function of several variables is given by

$$N(y_1, \cdots, y_r) = \sum_{G_1, \cdots, G_r = 0}^{\infty} \sum_{g_1 = 0}^{m_1} \cdots \sum_{g_r = 0}^{m_r} \frac{(-1)^{G_1 + \cdots + G_r}}{G_1! \cdots G_r!} \psi(\eta_{G_1, g_1}, \cdots, \eta_{G_r, g_r})$$

$$\times \theta_1(\eta_{G_1, g_1}) \cdots \theta_r(\eta_{G_r, g_r}) y_1^{-\eta_{G_1, g_1}} \cdots y_r^{-\eta_{G_r, g_r}}$$

(1.6)

Where $\psi(\cdots, \cdots, \cdots), \theta_i(\cdot), i = 1, \cdots, r$ are given respectively in (1.2), (1.3) and

$$\eta_{G_i, g_i} = \frac{d_{g_i}^{(1)} + G_i}{\delta_{g_i}^{(1)}}, \cdots, \eta_{G_r, g_r} = \frac{d_{g_r}^{(r)} + G_r}{\delta_{g_r}^{(r)}}$$

which is valid under the conditions $\delta_j^{(i)}[d_j^{(i)} + p_i] \neq \delta_j^{(i)}[d_j^{(i)} + G_i]$

(1.7)

for $j \neq m_i, m_i = 1, \cdots \eta_{G_i, g_i}; p_i, n_i = 0, 1, 2, \cdots; y_i \neq 0, i = 1, \cdots, r$

(1.8)

The multivariable I-function is defined in term of multiple Mellin-Barnes type integral:

$$I(z_1, \cdots, z_s) = \int_{p_2, q_2, p_3, q_3, \ldots, p_s, q_s}^{m_2, n_2; 0, n_3; \cdots; 0, n_r; m', n'; \cdots; m^{(s)}, n^{(s)}} \left(\begin{array}{c} z_1 \\ \vdots \\ \vdots \\ z_s \\ \end{array} \right) \left(\begin{array}{c} a_{2j}^{(s)}; \alpha_{2j}^{(s)}; \alpha_{2j}^{(s)} \end{array} \right)_{1, p_2; \cdots; \left(\begin{array}{c} b_{2j}^{(s)}; \beta_{2j}^{(s)}; \beta_{2j}^{(s)} \end{array} \right)_{1, q_2; \cdots;}$$

(1.9)

$$\left(a_{sj}^{(s)}; \alpha_{sj}^{(s)} \right)_{1, p_s} : \left(a_{sj}^{(s)}; \alpha_{sj}^{(s)} \right)_{1, p_s} : \cdots ; \left(a_{sj}^{(s)}; \alpha_{sj}^{(s)} \right)_{1, p_s}$$

$$\left(b_{sj}^{(s)}; \beta_{sj}^{(s)} \right)_{1, q_s} : \left(b_{sj}^{(s)}; \beta_{sj}^{(s)} \right)_{1, q_s} : \cdots ; \left(b_{sj}^{(s)}; \beta_{sj}^{(s)} \right)_{1, q_s}$$

(1.10)

The defined integral of the above function, the existence and convergence conditions, see Y,N Prasad [2]. Throughout the present document, we assume that the existence and convergence conditions of the multivariable I-function.

The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by extension of the corresponding conditions for multivariable H-function given by as:
\[|\arg z_k| < \frac{1}{2} \Omega_i^{(k)} \pi, \]

where

\[
\Omega_i^{(k)} = \sum_{k=1}^{n^{(i)}} \alpha_k^{(i)} - \sum_{k=n^{(i)}+1}^{p^{(i)}} \alpha_k^{(i)} + \sum_{k=1}^{m^{(i)}} \beta_k^{(i)} - \sum_{k=m^{(i)}+1}^{q^{(i)}} \beta_k^{(i)} + \left(\sum_{k=1}^{n_2} \alpha_{2k}^{(i)} - \sum_{k=n_2+1}^{p_2} \alpha_{2k}^{(i)} \right) + \ldots
\]

\[
\left(\sum_{k=1}^{n_r} \alpha_{sk}^{(i)} - \sum_{k=n_r+1}^{p_r} \alpha_{sk}^{(i)} \right) - \left(\sum_{k=1}^{q_2} \beta_{2k}^{(i)} + \sum_{k=1}^{q_3} \beta_{3k}^{(i)} + \ldots + \sum_{k=1}^{q_r} \beta_{sk}^{(i)} \right)
\]

\[(1.11)\]

where \(i = 1, \ldots, s \)

The complex numbers \(z_i \) are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable I-function.

We may establish the asymptotic expansion in the following convenient form:

\[
I(z_1, \ldots, z_s) = 0(\max(|z_1|^{\alpha_1'}, \ldots, |z_s|^{\alpha_s'}), \max(|z_1|, \ldots, |z_s|) \to 0
\]

\[
I(z_1, \ldots, z_s) = 0(\min(|z_1|^{\beta_1'}, \ldots, |z_s|^{\beta_s'}), \min(|z_1|, \ldots, |z_s|) \to \infty
\]

where, with \(k = 1, \ldots, z : \alpha'_k = \min[\text{Re}(b_j^{(k)}/\beta_j^{(k)})], j = 1, \ldots, m_k \) and

\[
\beta'_k = \max[\text{Re}((a_j^{(k)})/\alpha_j^{(k)})], j = 1, \ldots, n_k
\]

We will use these following notations in this paper:

\[
U = p_2, q_2, p_3, q_3; \ldots; p_{s-1}, q_{s-1}; V = 0, n_2, 0, n_3; \ldots; 0, n_{s-1}
\]

\[(1.12)\]

\[
W = (p', q'); \ldots; (p^{(s)}, q^{(s)}); X = (m', n'); \ldots; (m^{(s)}, n^{(s)})
\]

\[(1.13)\]

\[
A = (a_{2k}, \alpha_{2k}'; \alpha_{2k}''); \ldots; (a_{(s-1)k}, \alpha_{(s-1)k}'; \alpha_{(s-1)k}'')
\]

\[(1.14)\]

\[
B = (b_{2k}, \beta_{2k}'; \beta_{2k}''); \ldots; (b_{(s-1)k}, \beta_{(s-1)k}'; \beta_{(s-1)k}'')
\]

\[(1.15)\]

\[
\mathfrak{a} = (a_{sk}; \alpha_{sk}'; \alpha_{sk}''); \ldots; \alpha_{sk}^{(s)}; \mathfrak{b} = (b_{sk}; \beta_{sk}'; \beta_{sk}''); \ldots; \beta_{sk}^{(s)}
\]

\[(1.16)\]

\[
A' = (a_{k}' \alpha_{k}'_{1,p'}; \ldots; (a_{k}^{(s)}; \alpha_{k}^{(s)}_{1,p^{(s)}}); B' = (b_{k}' \beta_{k}'_{1,q'}; \ldots; (b_{k}^{(s)}; \beta_{k}^{(s)}_{1,q^{(s)}})
\]

\[(1.17)\]

The contracted form is:

ISSN: 2231-5373 http://www.iijmttjournal.org Page 107
Srivastava and Garg [6] introduced and defined a general class of multivariable polynomials as follows

\[I(z_1, \cdots, z_s) = I_{U; \Phi, \Phi; \Phi}^{V; 0, n, \alpha, \lambda} \left(\begin{array}{c} z_1 \\ \vdots \\ z_s \\ \alpha; A; A' \\
\beta; B; B' \end{array} \right) \]

(1.18)

the coefficients are arbitrary constants, real or complex.

2. S Generalized Gauss’s hypergeometric function

The S generalized Gauss hypergeometric function \(F_p^{(\alpha, \beta; \tau, \mu)}(a, b, c; z) \) introduced and defined by Srivastava et al [4, page 350, Eq. (1.12)] is represented in the following manner:

\[F_p^{(\alpha, \beta; \tau, \mu)}(a, b, c; z) = \sum_{n=0}^{\infty} \frac{B^{(\alpha, \beta; \tau, \mu)}_p (b+n, c-b)}{B(b, c-b)} \frac{z^n}{n!} \quad (|z| < 1) \]

(2.1)

provided that \(\Re(p) > 0, \min \Re(\alpha, \beta, \tau, \mu) > 0; \Re(c) > \Re(b) > 0 \)

where the S generalized Beta function \(B^{(\alpha, \beta; \tau, \mu)}_p (x, y) \) was introduced and defined by Srivastava et al [4, page 350, Eq. (1.13)]

\[B^{(\alpha, \beta; \tau, \mu)}_p (x, y) = \int_{1}^{y} t^{-1} (1 - t)^{y-1} F_p \left(\alpha; \beta; \frac{-p}{t^\tau (1-t)^\mu} \right) dt \]

(2.2)

provided that \(\Re(p) > 0, \min \Re(x, y, \alpha, \beta) > 0; \min \{ \Re(\tau), \Re(\mu) \} > 0 \)

3. Required integral

We note \(S(a, b, c) \), the Selberg integral, see Askey et al [11], page 402 by:

\[S(a, b, c) = \int_{0}^{1} \cdots \int_{0}^{1} \prod_{i=1}^{n} x_i^{a-1} (1 - x_i)^{b-1} \prod_{1 \leq j < k \leq n} |x_j - x_k|^{2c} \, dx_1 \cdots dx_n = \]

\[= \prod_{j=0}^{n-1} \frac{\Gamma(a + jc) \Gamma(b + jc) \Gamma(1 + (j+1)c)}{\Gamma(a + b + (n-1+j)c) \Gamma(1 + c)} \]

(3.1)

with \(\Re(a) > 0, \Re(b) > 0, \Re(c) > \max \left\{ -\frac{1}{n}, -\frac{\Re(a)}{n-1}, -\frac{\Re(b)}{n-1} \right\} \)
We consider the new integral, see Askey et al. ([1], page 402) defined by:

Lemme

\[\int_0^1 \cdots \int_0^1 \prod_{i=1}^k x_i \prod_{i=1}^n x_i^{a-1}(1-x_i)^{b-1} \prod_{1 \leq j < k \leq n} |x_j - x_k|^{2c} \, dx_1 \cdots dx_n = \]

\[= \prod_{i=1}^k \frac{(a + (n - i)c)}{(a + b + (2n - i - 1)c)} S(a, b, c) \tag{3.2} \]

with \(Re(a) > 0, Re(b) > 0, Re(c) > Max \left\{ -\frac{1}{n}, -\frac{Re(a)}{n-1}, -\frac{Re(b)}{n-1} \right\} \) and \(k \leq n \).

where \(S(a, b, c) \) is defined by (3.1). In this paper, we will denote the modified Selberg integral.

4. Main integral

Let \(X_{u,v,w} = \prod_{i=1}^n x_i^u(1-x_i)^v \prod_{1 \leq j < k \leq n} |x_j - x_k|^{2w} \) and

\[B_t = \frac{(-L)_{h_1+\cdots+h_t}R_{1+\cdots+R_t}B(E; R_1, \cdots, R_t)}{R_1! \cdots R_t!} \]

we have the following formula

Theorem

\[\int_0^1 \cdots \int_0^1 \prod_{i=1}^k x_i \prod_{i=1}^n x_i^{a-1}(1-x_i)^{b-1} \prod_{1 \leq j < k \leq n} |x_j - x_k|^{2c} F_p^{(a, \beta, \tau, \mu)}(a; b; c; yX_{\alpha, \beta, \gamma}) \]

\[= \sum_{h_1, \cdots, h_t} \sum_{R_1, \cdots, R_t} \sum_{n'=0}^{\infty} \sum_{G_1, \cdots, G_r=0}^{\infty} \sum_{g_1=0}^{m_1} \cdots \sum_{g_r=0}^{m_r} \sum_{(a)} \frac{B_p^{(a, \beta, \tau, \mu; b+n', c-b)}}{B(b, c-b)} G_1 \cdots G_r B_t \]
\[
G(\eta_{G_1,g_1}, \cdots, \eta_{G_r,g_r}) \frac{\partial^n}{\partial t^n} Z_i \left(\frac{\partial^m}{\partial t^m} X \right) \left(\begin{array}{c}
Z_1 \\
\vdots \\
Z_s
\end{array} \right) = A; \\
\vdots \\
= B;
\]

\[
[1-a-n^\alpha - \sum_{i=1}^t R_i \alpha_i - \sum_{i=1}^r \eta_{G_i,g_i} \delta_i - j(c + \gamma R + \sum_{i=1}^t \gamma_i K_i + \sum_{i=1}^r \phi_i \eta_{G_i,g_i}); \epsilon_1 + j \zeta_1, \cdots, \epsilon_s + j \zeta_s]_{0,n-1}
\]

\[
[1-b-n^\beta - \sum_{i=1}^t R_i \beta_i - \sum_{i=1}^r \eta_{G_i,g_i} \psi_i - j(c + \gamma R + \sum_{i=1}^t \gamma_i K_i + \sum_{i=1}^r \phi_i \eta_{G_i,g_i}); \eta_1 + j \zeta_1, \cdots, \eta_s + j \zeta_s]_{0,n-1}
\]

\[
[-(j+1)(c+n^\gamma + \sum_{i=1}^t \gamma_i R_i + \sum_{i=1}^r \phi_i \eta_{G_i,g_i}); (j+1) \zeta_1, \cdots, (j+1) \zeta_s)]_{0,n-1}, A_2, A_3, A : A^T \\
\mathfrak{B} : \mathfrak{B}^T
\]

(4.1)

where \(B_1 = [1 - a - b - (\alpha + \beta)n^\gamma - \sum_{i=1}^t R_i (\alpha_i + \beta_i) - \sum_{i=1}^r (\delta_i + \phi_i) \eta_{G_i,g_i} - (n - 1 + j) \times \)

\[
(c + n^\gamma + \sum_{i=1}^t R_i \gamma_i + \sum_{i=1}^r \phi_i \eta_{G_i,g_i}); \epsilon_1 + j \zeta_1, \cdots, \epsilon_s + j \zeta_s]_{0,n-1}
\]

(4.2)

\[
A_2 = [-a - n^\gamma - \sum_{i=1}^t R_i \alpha_i - \sum_{i=1}^r \eta_{G_i,g_i} \delta_i - (n - j)(c + m^\gamma + \sum_{i=1}^t \gamma_i R_i + \sum_{i=1}^r \phi_i \eta_{G_i,g_i}); \\
\epsilon_1 + (n - j) \zeta_1, \cdots, \epsilon_s + (n - j) \zeta_s]_{1,k}
\]

(4.3)

\[
B_2 = [1 - a - n^\gamma - \sum_{i=1}^t R_i \alpha_i - \sum_{i=1}^r \eta_{G_i,g_i} \delta_i - (n - j)(c + m^\gamma + \sum_{i=1}^t \gamma_i K_i + \sum_{i=1}^r \phi_i \eta_{G_i,g_i}); \\
\epsilon_1 + (n - j) \zeta_1, \cdots, \epsilon_s + (n - j) \zeta_s]_{1,k}
\]

(4.4)

\[
B_3 = [-a - n^\gamma - \sum_{i=1}^t R_i \alpha_i - \sum_{i=1}^r \eta_{G_i,g_i} \delta_i - b - m^\beta - \sum_{i=1}^t R_i \beta_i - \sum_{i=1}^r \eta_{G_i,g_i} \psi_i \\
\epsilon_1 + \eta_1 + (2n - j - 1) \zeta_1, \cdots, (2n - j - 1)(c + m^\gamma + \sum_{i=1}^t \gamma_i R_i + \sum_{i=1}^r \phi_i \eta_{G_i,g_i}); \\
\epsilon_1 + \eta_1 + (2n - j - 1) \zeta_s]_{1,k}
\]

(4.5)
\[A_3 = [1 - a - n' \alpha - \sum_{i=1}^{t} R_i \alpha_i - \sum_{i=1}^{r} \eta_{G_i, g_i} \delta_i - b - m \beta - \sum_{i=1}^{t} R_i \beta_i - \sum_{i=1}^{r} \eta_{G_i, g_i} \psi_i \]

\[\epsilon_1 + \eta_1 + (2n - j - 1) \zeta_1, \cdots - (2n - j - 1)(c + m \gamma + \sum_{i=1}^{t} \gamma_i R_i + \sum_{i=1}^{r} \phi_i \eta_{G_i, g_i}) ; \]

\[\epsilon_s + \eta_s + (2n - j - 1) \zeta_s \] \[1]_{1,k} \quad (4.6) \]

Provided that

a) \(\min \{ \alpha, \beta, \gamma, \alpha_i, \beta_i, \gamma_i, \delta_j, \psi_j, \phi_j, \epsilon_l, \eta_l, \zeta_l \} > 0, i = 1, \cdots, t, j = 1, \cdots, r, l = 1, \cdots, s \),

b) \(A = \text{Re}[a + n' \alpha + \sum_{i=1}^{t} \delta_i \min_{1 \leq j \leq m_i} \frac{d^{(i)}_j}{\delta^{(i)}_j} + \sum_{i=1}^{r} \epsilon_i \min_{1 \leq j \leq m(i)} \frac{b^{(i)}_j}{\beta^{(i)}_j}] > 0 \)

c) \(B = \text{Re}[b + n' \beta + \sum_{i=1}^{r} \psi_i \min_{1 \leq j \leq m_i} \frac{d^{(i)}_j}{\delta^{(i)}_j} + \sum_{i=1}^{s} \eta_i \min_{1 \leq j \leq m(i)} \frac{b^{(i)}_j}{\beta^{(i)}_j}] > 0 \)

d) \(C = \text{Re}[c + n' \gamma + \sum_{i=1}^{r} \phi_i \min_{1 \leq j \leq m_i} \frac{d^{(i)}_j}{\delta^{(i)}_j} + \sum_{i=1}^{s} \zeta_i \min_{1 \leq j \leq m(i)} \frac{b^{(i)}_j}{\beta^{(i)}_j}] > \max \left\{ -\frac{1}{n}, -\frac{A}{n - 1}, -\frac{B}{n - 1} \right\} \)

e) \(|\arg z_k| < \frac{1}{2} A_k^{(k)} \frac{\pi}{n}, \text{ where } A_k^{(k)} \text{ is defined by (1.5)} ; i = 1, \cdots, r \)

f) The conditions (f) are satisfied and \(k \leq n \)

g) \(|\arg Z_k| < \frac{1}{2} \Omega_k^{(k)} \frac{\pi}{n}, \text{ where } \Omega_k^{(k)} \text{ is defined by (1.11)} ; i = 1, \cdots, s \)

h) The series occuring on the right-hand side of (3.1) are absolutely and uniformly convergent.

i) \(\text{Re}(p) \geq 0, \text{minRe}(\alpha, \beta, \tau, \mu) > 0; \text{Re}(c) > \text{Re}(b) > 0; |z| < 1 \)

The quantities \(A, B, A', B' \) are defined by (1.16), (1.17), (1.18) and (1.19).

Proof

First, expressing the generalized S generalized Gauss hypergeometric function \(F_2^{(\alpha, \beta; \tau, \mu)}(a, b; c; z) \) in serie with the help of equation (2.1), the Aleph-function of \(r \) variables in serie with the help of equation (1.6), the general class of polynomial of several variables \(S_L^{(b_1, \cdots, b_r)}(\cdot) \) with the help of equation (1.19) and the I-function of \(s \) variables in defined by Prasad [2] in Mellin-Barnes contour integral with the help of equation (1.10), changing the order of integration ans summation (which is easily seen to be justified due to the absolute convergence of the integral and the summations involved in the process). Now evaluating the resulting modified Selberg integral with the help of equation (3.2). Use the following relations \(\Gamma(a)(a)_n = \Gamma(a + n) \) and \(a = \frac{\Gamma(a + 1)}{\Gamma(a)} \) several times with \(\text{Re}(a) > 0 \). Finally interpreting the result thus obtained with the Mellin-barnes contour integral, we arrive at the desired result.

5. Particular cases

1) If \(U = V = A = B = 0 \), the multivariable I-function defined by Prasad [2] reduces to multivariable H-function
defined by Srivastava et al [7]. We have the following result.

Corollary 1

\[
\int_0^1 \cdots \int_0^1 \prod_{i=1}^k x_i \prod_{i=1}^n x_i^{a_i-1} (1-x_i)^{b_i-1} \prod_{1 \leq j < k \leq n} |x_j - x_k|^{2c} P_{\alpha, \beta, \tau, \mu}(a, b, c; yX_{\alpha, \beta, \gamma})
\]

\[
S_L^{h_1, \ldots, h_r}\left(\begin{array}{c}
y_1 X_{\alpha_1, \beta_1, \gamma_1} \\
\vdots \\
y_t X_{\alpha_t, \beta_t, \gamma_t}
\end{array}\right) \sum_{n=0}^{\infty} \sum_{g_1=0}^{\infty} \cdots \sum_{g_t=0}^{\infty} (a)_n \cdots (a)_t \frac{B_{\alpha, \beta, \tau, \mu}(b + n', c - b)}{B(b, c - b)} \frac{(-1)^{G_1 + \cdots + G_r}}{\delta_{\alpha_1} G_1! \cdots \delta_{\alpha_t} G_t!} \frac{B_{\beta}}{B_{\beta}}
\]

\[
G(\eta_{G_1, g_1}, \ldots, \eta_{G_r, g_r}) \left(\begin{array}{c}
\eta_{g_1, x_1}^{2n} \cdots \eta_{g_t, x_t}^{2n} \\
y_1^{R_1} \cdots y_t^{R_t} \frac{H_0^{0,n_x+3n+2k,X}}{H_0^{0,n_x+3n+2k,X}} \left(\begin{array}{c}
Z_1 \\
\vdots \\
Z_s
\end{array}\right)
\end{array}\right)
\]

\[
[1-a'n' - \sum_{i=1}^{r} R_i \alpha_i - \sum_{i=1}^{r} \eta_{g_i, g_i} \delta_i - j(c + \gamma' R + \sum_{i=1}^{r} \gamma_i K_i + \sum_{i=1}^{r} \phi_i \eta_{g_i, g_i}); \epsilon_1 + j \zeta_1, \cdots, \epsilon_s + j \zeta_s]_0, n-1
\]

\[
[1-b'n' - \sum_{i=1}^{r} R_i \beta_i - \sum_{i=1}^{r} \eta_{g_i, g_i} \psi_i - j(c + \gamma' R + \sum_{i=1}^{r} \gamma_i K_i + \sum_{i=1}^{r} \phi_i \eta_{g_i, g_i}); \eta_1 + j \zeta_1, \cdots, \eta_s + j \zeta_s]_0, n-1
\]

\[
[-(j+1)(c + n' \gamma + \sum_{i=1}^{t} \gamma_i R_i + \sum_{i=1}^{r} \phi_i \eta_{g_i, g_i}); (j + 1) \zeta_1, \cdots, (j + 1) \zeta_s]_0, n-1, A_2, A_3, A : A'
\]

under the same notations and conditions that (4.1) with \(U = V = A = B = 0\)

2) if \(B(L; R_1, \cdots, R_s) = \frac{\prod_{j=1}^A (a_j) R_j \phi_j + \cdots + R_s \phi_s}{\prod_{j=1}^C (c_j) m_1 \psi_j + \cdots + m_s \psi_s} \prod_{j=1}^{B'} (b_j) R_j \phi_j + \cdots + R_s \phi_s = \frac{\prod_{j=1}^{D'} (d_j) R_j \phi_j + \cdots + R_s \phi_s}{\prod_{j=1}^{D''} (d_j) R_j \phi_j + \cdots + R_s \phi_s}
\)
then the general class of multivariable polynomial \(S_{L}^{h_1,\cdots,h_t}[z_1,\cdots,z_t] \) reduces to generalized Lauricella function defined by Srivastava et al [5].

\[
\begin{align*}
F_{C':D';\cdots;D'(t)}^{1-\bar{A}B';\cdots;B'(t)}
\left(\begin{array}{c}
\frac{z_1}{\delta t} \\
\vdots \\
\frac{(-L);R_1,\cdots,R_t}{(a)};\theta',\cdots,\theta^{(t)} \colon [(b');\phi']\cdots;[(b^{(t)});\phi^{(t)}] \\
[(c);\psi',\cdots,\psi^{(t)}] \colon [(d');\delta']\cdots;[(d^{(t)});\delta^{(t)}] \\
\end{array} \right)
\end{align*}
(5.3)
\]

We have the following formula

Corollary 2

\[
\begin{align*}
\int_{0}^{1} \cdots \int_{0}^{1} \prod_{i=1}^{k} x_{i}^{n} \prod_{i=1}^{n} x_{i}^{a_{i}-1} (1-x_{i})^{b_{i}-1} \prod_{1 \leq j < k \leq n} |x_{j} - x_{k}|^{2c} F_{p}^{(\alpha,\beta;\tau;\mu)}(a,b,c;yX_{\alpha,\beta,\gamma}) \\
\cdots \\
\end{align*}
\]

\[
\begin{align*}
\left(\begin{array}{c}
z_1 X_{\delta_1,\psi_1,\phi_1} \\
\vdots \\
z_t X_{\delta_t,\psi_t,\phi_t} \\
\end{array} \right) \prod_{r=1}^{m_r} I_{V:0,n_r+2k;X} \left(\begin{array}{c}
\sum_{g_r=0}^{\infty} \sum_{G_r=0}^{\infty} \frac{G_r}{\delta_{g_r} G_r!} G_{(\gamma_{g_1},\gamma_1;\cdots;\gamma_{g_r},\gamma_r)}(a)_{n_r} B_{p}^{(\alpha,\beta;\tau;\mu)}(b+n',c-b) B_{t} \\
\sum_{r=0}^{m_r} \sum_{g_r=0}^{\infty} \frac{(-)^{G_1+\cdots+G_r}}{\delta_{g_1} G_1! \cdots \delta_{g_r} G_r} G_{(\gamma_{g_1},\gamma_1;\cdots;\gamma_{g_r},\gamma_r)}(a)_{n_r} B_{p}^{(\alpha,\beta;\tau;\mu)}(b+n',c-b) B_{t} \\
\end{array} \right) \\
\end{align*}
\]

\[
\begin{align*}
\frac{y_1^{n_1} \cdots y_t^{n_t}}{n_1! \cdots n_t!} & \left(\begin{array}{c}
\sum_{i=1}^{l_1} R_i \alpha_i \\
\vdots \\
\sum_{i=1}^{l_s} R_i \beta_i \\
\end{array} \right) \\
\end{align*}
\]

\[
\begin{align*}
[1-a'\alpha - \sum_{i=1}^{l_1} R_i \alpha_i - \sum_{r'_{i=1}}^{r_1} \eta_{g_r,\delta_r} \delta_r - j(c+\gamma' R + \sum_{i=1}^{l_1} \gamma_i K_i + \sum_{i=1}^{r_1} \phi_i \eta_{g_r,\delta_r});\epsilon_1 + j\zeta_1,\cdots,\epsilon_s + j\zeta_s]_{0,n-1} \\
(-c-n'\gamma - \sum_{i=1}^{r_1} R_i \gamma_i - \sum_{r'_{i=1}}^{r_1} \phi_i \eta_{g_r,\delta_r};\zeta_1,\cdots,\zeta_s) \cdots \\
[1-b'\beta - \sum_{i=1}^{l_1} R_i \beta_i - \sum_{r'_{i=1}}^{r_1} \eta_{g_r,\psi_r} \psi_r - j(c+\gamma' R + \sum_{i=1}^{l_1} \gamma_i K_i + \sum_{i=1}^{r_1} \phi_i \eta_{g_r,\psi_r});\eta_1 + j\zeta_1,\cdots,\eta_s + j\zeta_s]_{0,n-1} \\
(-c-n'\gamma - \sum_{i=1}^{r_1} \gamma_i R_i - \sum_{r'_{i=1}}^{r_1} \phi_i \eta_{g_r,\psi_r};\zeta_1,\cdots,\zeta_s) \cdots \\
\end{align*}
\]
\[-(j+1)(c+n')\gamma + \sum_{i=1}^{r} \gamma_i R_i + \sum_{i=1}^{r} \phi_i \eta(G_i, g_i); (j + 1)\zeta_1, \cdots, (j + 1)\zeta_s)_{0,n-1}, A_2, A_3, \mathfrak{A} : A' \mathfrak{B} : B' \]

under the same conditions and notations that (4.1)

\[
\text{and } B'_t = \frac{(-L)_{h_1} R_1 \cdots h_t R_t}{R_1! \cdots R_t!} B(E; R_1, \cdots, R_t) ; B(L; R_1, \cdots, R_t) \text{ is defined by (5.2)}
\]

6. Conclusion

In this paper we have evaluated a modified Selberg integral involving the product of the multivariable I-function defined by Prasad [2], the multivariable Aleph-function, the S generalized Gauss’s hypergeometric function and a general class of polynomials of several variables. The integral established in this paper is of very general nature as it contains multivariable I-function, which is a general function of several variables studied so far. Thus, the integral established in this research work would serve as a key formula from which, upon specializing the parameters, as many as desired results involving the special functions of one and several variables can be obtained.

REFERENCES

Personal adress : 411 Avenue Joseph Raynaud
Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE