Some V_4-cordial families with its balanced V_4-cordial labeling

V. J. Kaneria1, Jaydev R. Teraiya2

1Assistant Professor, Department of Mathematics, Saurashtra University, Rajkot, Gujarat, India
2Assistant Professor, Department of Mathematics, Marwadi University, Rajkot, Gujarat, India

Abstract: In this paper we discussed about balanced V_4-cordial labeling. We proved that G^*, $P_n \times G$ and G^* are balanced V_4-cordial graphs, when G is a balanced V_4-cordial graph.

Keywords: V_4-cordial graph, balanced V_4-cordial labeling, Star of a graph G and the complete star of a graph G.

Mathematics Subject Classification-05C78

I. INTRODUCTION

Labeled graph have many diversified applications. The cordial labeling introduced by Cahit [1] is a weaker version of graceful and harmonious labeling. We follow Harary [2] for the basic notation and terminology of graph theory. Gallian [3] provide vast amount of literature on survey of different types of graph labeling. Also, he proved that the complete graph is cordial if and only if.

After this, many researchers have studied cordial graph and similar type graph labeling. V_4-cordial labeling was introduced by Riskin [4] in 2013.

A cordial graph G with a cordial labelling f is called a balanced cordial graph if $|v_f(0) - v_f(1)| = 0$. Kaneria, Patadiya and Teraiya [5] proved that $P_n \times C_4$, $C_n \times C_4$ is balanced cordial. Also, Kaneria, Teraiya and Patadiya [6] proved that $P(t, C_4)$ is a balanced cordial if t is odd and it is vertex balanced cordial if t is even, where $n \in \mathbb{N}$. $C(t, C_4)$ is a balanced cordial if $t \equiv 0 \pmod{4}$ and it is vertex balanced cordial if $t \equiv 1, 3 \pmod{4}$ where $n \in \mathbb{N}$ and C_4^n is a balanced cordial graph. $V \subseteq \mathbb{N}$.

Let $V_4 = \{e, a, b, c\}$ be the Klein four group with the binary operation $*$. A V_4-cordial graph G with a V_4-cordial labeling f is said to be a balanced V_4-cordial graph if $|v_f(p) - v_f(q)| + |e_f(p) - e_f(q)| \leq 2$ for $p, q \in V_4$. Let G be a V_4-cordial graph with a V_4-cordial labeling f on G. Define $g: V(G) \rightarrow V_4$ by $f(u) = g(u)$, when $f(u) = 0$ and $f(x), f(y), f(z) \in \{a, b, c\}$. Observed that g is also a V_4-cordial labeling on G. Also, observed that g is a balanced V_4-cordial labeling, when f is a balanced V_4-cordial labeling for G.

Star of graph G is denoted by G^* and it obtain by $|V(G)| + 1$ copies of G say $G^{(0)}, G^{(1)}, G^{(2)}, \ldots, G^{(p)}$, where $V(G) = \{v_1, v_2, \ldots, v_p\}$. It is obtained by joining each vertex of $G^{(i)}$ with the corresponding vertex v_i of $G^{(i)}$ for $i = 1, 2, \ldots, p$. We call $G^{(0)}$ as central copy of G. It is obvious that $K_1^* = K_1, K_2^* = P_2$ and $K_3^* = P_3 \times P_3$.

In this paper we have obtain a balanced V_4-cordial labeling for G^*, G^* and $P_n \times G$, where G is balanced V_4-cordial graph.

II. Main Results

Theorem -2.1

If G is a balanced V_4-cordial graph, then so is G^*.

Proof: Let $V(G) = \{v_1, v_2, \ldots, v_p\}$ and $q = |E(G)|$. Let $f: V(G) \rightarrow V_4$ be a balanced cordial labeling for G. It is obvious that $p, q \equiv 0 \pmod{4}$ and $e_f(s) = \frac{p}{4}$. Let $H = G^*$ and $V(H) = \bigcup_{i=0}^{p} V(G^{(i)}) = \{v_1^{(i)}, v_2^{(i)}, \ldots, v_p^{(i)}\}$ for all i.

Note that $V(H) = p(p + 1)$ and $|E(H)| = (p + 1)q + p$.

Define $g: V(H) \rightarrow V_4$ as follows. For any $v_j^{(i)} \in V(H)$,
Note that above defined labeling function g on G is also balanced V_4-cordial labeling.

Define $h : V(P_n \times G) \rightarrow V_4$ as follows.

For any $v_j^{(i)} \in V(P_n \times G)$

$$h(v_j^{(i)}) = \begin{cases} f(v_j^{(i)}) & \text{when } i \text{ is odd} \\ g(v_j^{(i)}) & \text{when } i \text{ is even} \end{cases}$$

Note that above defined labeling function g on G is also balanced V_4-cordial labeling.

Define $h : V(P_n \times G) \rightarrow V_4$ as follows.

For any $v_j^{(i)} \in V(P_n \times G)$

$$h(v_j^{(i)}) = \begin{cases} f(v_j^{(i)}) & \text{when } i \text{ is odd} \\ g(v_j^{(i)}) & \text{when } i \text{ is even} \end{cases}$$

$a_i = \frac{p_i q_i + 1}{2}$

$p_i q_i$ is the number of edges between the ith copy of G and the jth copy of G.

Note that above defined labeling function g on G is also balanced V_4-cordial labeling.

Define $h : V(P_n \times G) \rightarrow V_4$ as follows.

For any $v_j^{(i)} \in V(P_n \times G)$

$$h(v_j^{(i)}) = \begin{cases} f(v_j^{(i)}) & \text{when } i \text{ is odd} \\ g(v_j^{(i)}) & \text{when } i \text{ is even} \end{cases}$$

Note that above defined labeling function g on G is also balanced V_4-cordial labeling.

Define $h : V(P_n \times G) \rightarrow V_4$ as follows.

For any $v_j^{(i)} \in V(P_n \times G)$

$$h(v_j^{(i)}) = \begin{cases} f(v_j^{(i)}) & \text{when } i \text{ is odd} \\ g(v_j^{(i)}) & \text{when } i \text{ is even} \end{cases}$$

Note that above defined labeling function g on G is also balanced V_4-cordial labeling.

Define $h : V(P_n \times G) \rightarrow V_4$ as follows.

For any $v_j^{(i)} \in V(P_n \times G)$

$$h(v_j^{(i)}) = \begin{cases} f(v_j^{(i)}) & \text{when } i \text{ is odd} \\ g(v_j^{(i)}) & \text{when } i \text{ is even} \end{cases}$$

Note that above defined labeling function g on G is also balanced V_4-cordial labeling.
It is observed that $v_0(0) = (p + 1)v_f(0) = \frac{(p+1)p}{4}$, $v_0(a) = v_0(b) = v_0(c) = \frac{p}{4}$. Moreover $e_{V_4}(0) = v_f(0) + \frac{pq}{4} + \frac{pp}{4} = \frac{1}{4}[pq + q + p^2 = Q4 = ega = egb = egc]$. Therefore, H is a balanced V_4-cordial graph.

i.e. G^* is balanced V_4-cordial.

References

