Semi Regular Weakly Open Sets in Topological Spaces

R. S. Wali *1, Basayya B Mathad *2

*Associate professor, Department of Mathematics, Bhandari and Rathi College, Guledgudda, Karnataka, India
Research scholar, Department of Mathematics, Rani Channamma University, Belagavi, Karnataka, India

Abstract — This paper considers a new class of sets called semi-regular weakly open (briefly srw-open) sets are introduced and studied in topological spaces. i.e. A subset G of topological space X is said to be semi-regular weakly open if if F \subseteq \sin t(A), whenever F \subseteq A and F is rw-closed set in X. The new class strictly lies between semi-open sets, \(\alpha \)-open sets and g-open sets in topological spaces. Also, as applications, using some properties of srw-open sets and srw-closed sets we investigate srw-interior and srw-closure operators and their properties respectively.

Keywords— srw-closed sets, srw-open sets, srw-neighbourhoods, srw-interior, srw-closure.

I. INTRODUCTION

Levine and Stone [6, 13] introduced generalized open sets, regular open sets in topological spaces respectively, then regular weakly open sets, generalized semi closed sets, generalized \(\alpha \)-closed sets and \(\alpha \)-generalized closed sets semi open sets, regular w-closed sets, pgrw-closed sets and semi-regular weakly closed sets have been introduced and studied by Benchalli S. S. and Wali R. S. [2], Arya S.P. and Nour T.M. [1], Maki et al. [7], Levin [7], Wali R. S. and Mendalgeri [17], Wali R. S. and Chilakkad [18] and Wali R. S. and Mathad [16] respectively.

We introduce and study the semi-regular weakly open (briefly srw-open) sets, semi-regular weakly neighbourhood (briefly srw-nhd) and operators; srw-interior and srw-closure in topological space and obtain some of their properties.

II. PRELIMINARIES

Throughout this paper X and Y represent the topological spaces on which no separation axioms are assumed unless otherwise mentioned. For a subset A of topological space X, cl(A) and int(A) denote the closure of A and interior of A respectively. Let X\A denotes the complement of A in X. Now, we recall the following definitions.

Definition 2.1 A subset A of a topological space X is called

i) Regular open [14], if \(A = \text{int}(cl(A)) \) and regular closed if \(cl(\text{int}(A)) = A \).

ii) Pre-open [10], if \(A \subseteq \text{int}(cl(A)) \) and pre-closed if \(cl(\text{int}(A)) \subseteq A \).

iii) Semi open [7], if \(A \subseteq cl(\text{int}(A)) \) and semi-closed if \(cl(\text{int}(A)) \subseteq A \).

iv) \(\alpha \)-open [11], if \(A \subseteq \text{int}(cl(\text{int}(A))) \) and \(\alpha \)-closed if \(cl(\text{int}(A)) \subseteq A \).

v) Semi pre open [11], if \(A \subseteq cl(\text{int}(cl(A))) \) and semi pre-closed if \(cl(\text{int}(cl(A))) \subseteq A \).

vi) \(\pi \)-open [19], if A is a finite union of regular open sets.

Definition 2.2 A subset A of a topological space X is called

i) Generalized closed (briefly g-closed) [7], if \(cl(A) \subseteq U \) whenever \(A \subseteq U \) and U is open in X.

ii) Semi-generalized closed (briefly sg-closed) [3], if \(scl(A) \subseteq U \) whenever \(A \subseteq U \) and U is semi open in X.

iii) Generalized semi-closed (briefly gs-closed) [1], if \(scl(A) \subseteq U \) whenever \(A \subseteq U \) and U is open in X.

iv) Generalized \(\alpha \)-closed (briefly g\(\alpha \)-closed) [4], if \(\alpha cl(A) \subseteq U \) whenever \(A \subseteq U \) and U is \(\alpha \)-open in X.

v) Generalized \(\alpha \)-closed (briefly g\(\alpha \)-closed) [9], if \(cl(A) \subseteq U \) whenever \(A \subseteq U \) and U is open in X.

vi) Generalized semi pre-closed (briefly gsp-closed) [5], if \(spcl(A) \subseteq U \) whenever \(A \subseteq U \) and U is open in X.

vii) Regular generalized closed (briefly rg-closed) [12], if \(cl(A) \subseteq U \) whenever \(A \subseteq U \) and U is regular open in X.

viii) Weakly closed (briefly w-closed) [13], if \(cl(A) \subseteq U \) whenever \(A \subseteq U \) and U is semi-open in X.
ix) Regular weakly closed (briefly rw-closed) [2], if
\[c\ell(A) \subseteq U \] whenever \(A \subseteq U \) and \(U \) is regular semi-open in \(X \).
x) \(\alpha \)-regular weakly closed (briefly \(\alpha \) rw-closed)
[17], if \(\alpha c\ell(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is rw-open set in \(X \).

The complements of above all closed sets are their respective open sets in the same topological space \(X \).

The semi-pre-closure (resp. semi-closure, resp. pre-closure, resp. \(\alpha \) -closure) of a subset \(A \) of \(X \) is the intersection of all semi-pre- closed (resp. semi- closed, resp. pre- closed, resp. \(\alpha \) -closed) sets containing \(A \) and is denoted by \(scp(A) \) (resp. \(scl(A) \), resp. \(pcl(A) \), resp. \(cl(A) \)).

Definition 2.3 A subset \(A \) of a space \(X \) is said to be semi regular weakly closed (briefly srw-closed) set [16], if \(scl(A) \subseteq U \) whenever \(A \subseteq U \) and \(U \) is rw-open set in \(X \).

We denote the family of all srw-closed sets, srw-open sets, \(\alpha \) rw-open sets and semi-open sets of \(X \) by SRWC(X), SRWO(X), \(\alpha \) RWO(X) and SO(X) respectively.

Lemma 2.4 i) For a subset \(A \) of \(X \), \(\alpha rW - c\ell(A) \) and defined as \(\alpha rW - c\ell(A) = \cap F \subseteq X : A \subseteq F \in \alpha rWC(X) \).

ii) For a subset \(A \) of \(X \), semi-closure of \(A \) [6] is denoted by \(scl(A) \) and defined as \(scl(A) = \cap F \subseteq X : A \subseteq F \in SC(X) \).

iii) For a subset \(A \) of \(X \), gs-closure of \(A \) [1] is denoted by \(gs - c\ell(A) \) and defined as \(gs - c\ell(A) = \cap F \subseteq X : A \subseteq F \in GSC(X) \).

III. SEMI REGULAR WEAKLY OPEN (BRIEFLY SRW-OPEN) SETS

In this section, we introduce and study srw-open sets in topological space and obtain some of their basic properties.

Definition 3.1 A subset \(A \) of \(X \) is called Semi Regular Weakly open (briefly srw-open) set, if \(X \cap A \) is srw-closed set in \(X \). The family of all semi regular weakly open sets in \(X \) is denoted as SRWO(X).

Theorem 3.2 If a subset \(A \) of space \(X \) is \(\alpha rW \)-open, then it is srw-open in \(X \) but not conversely.

Proof: Let \(A \) be a \(\alpha rW \)-open set in a space \(X \). Then \(X \cap A \) is a \(\alpha rW \)-closed set. By Theorem 3.2 of [16], \(X \cap A \) is srw-closed. Therefore \(A \) is a srw-open set in \(X \).

The converse of the above Theorem need not be true as shown in example 3.3.

Example 3.3 Let \(X = \{ a, b, c, d \} \) with topology \(\tau = \{ X, \phi, \{ a \}, \{ b, c \}, \{ a, b, c \} \} \). Then \(\{ a, d \} \) and \(\{ b, c, d \} \) are srw-open sets in \(X \) but it is not \(\alpha rW \)-open sets in \(X \).

Theorem 3.4 If a subset \(A \) of space \(X \) is semi-open, then it is semi-open in \(X \) but converse is not true.

Proof: Let \(A \) be a semi-open set in a space \(X \). Then \(X \cap A \) is a semi-closed set. By Theorem 3.6 of [16], \(X \cap A \) is srw-closed. Therefore \(A \) is a srw-open set in \(X \).

The converse of the above Theorem need not be true as shown in example 3.5.

Example 3.5 Let \(X = \{ a, b, c, d \} \) with topology \(\tau = \{ X, \phi, \{ a \}, \{ b, c \}, \{ a, b, c \} \} \). Then \(\{ b \} \) and \(\{ c \} \) are srw-open sets in \(X \) but not semi-open sets in \(X \).

Corollary 3.6 From Levine [7], it is evident that every open set is semi-open set but not conversely. By Theorem 3.4 every semi-open set is srw-open set in \(X \) but not conversely and hence every open set is srw-open set in \(X \).

Corollary 3.7 From Wali and Prabhavati [17], it is evident that every \(\alpha \) -open set is \(\alpha rW \)-open set but not conversely and hence every \(\alpha \) -open set is srw-open set but not conversely.

Corollary 3.8 From Stone [14], it is evident that every regular open set is open, but not conversely. By Corollary 3.7, every open set is srw-open set but conversely and hence every regular open set is srw-open set in \(X \).

Corollary 3.9 From Velicko [15], it is evident that every \(\delta \) -open (\(\delta \) -open) set is open but not conversely. By Corollary 3.7, every open set is srw-open set but not conversely and hence every \(\delta \) -open (\(\delta \) -open) set is srw-open set in \(X \).

Theorem 3.10 If a subset \(A \) of a space \(X \) is srw-open, then it is a gs-open set in \(X \).

Proof: Let \(A \) be a srw-open set in \(X \), then \(X \cap A \) is a srw-closed set in \(X \). By Theorem 3.4 of [16], every srw-closed set is gs-closed set in \(X \) i.e. \(X \cap A \) is a gs-closed set in \(X \). Therefore \(A \) is a gs-open set in \(X \).

The converse of the above Theorem need not be true as shown in example 3.11.

Example 3.11 Let \(X = \{ a, b, c, d \} \) with topology \(\tau = \{ X, \phi, \{ a \}, \{ b, c \}, \{ a, b, c \} \} \). Then \(\{ a, c \} \) and \(\{ a, b \} \) are gs-open sets in \(X \) but not srw-open sets in \(X \).

Theorem 3.12 If a subset \(A \) of space \(X \) is srw-open, then it is a gs-open set in \(X \).

Proof: Let \(A \) be a srw-open set in \(X \), then \(X \cap A \) is a srw-closed set in \(X \). By Theorem 3.10 of [16], every srw-closed set is gs-closed set in \(X \) i.e. \(X \cap A \) is a gs-closed set in \(X \). Therefore \(A \) is a gs-open set in \(X \).

The converse of the above Theorem need not be true as shown in example 3.13.

Example 3.13 Let \(X = \{ a, b, c, d \} \) with topology \(\tau = \{ X, \phi, \{ a \}, \{ b, c \}, \{ a, b, c \} \} \). Then \(\{ a, b \} \) and \(\{ c, d \} \) are gs-open sets in \(X \) but not srw-open sets in \(X \).
The concepts of g-open, w-open, α g-open and w α-open sets are independent with the concept of srw-open set as shown in the following example 3.14.

Example 3.14 Let $X=\{a, b, c, d\}$ with topology $\tau=\{X, \emptyset, \{a, b, c\}, \{a, d\}\}$. Then $\{a, d\}$ is a srw-open, however it can be verified that it is not g-open, w-open, g-open and w-open set. Also, the set $\{a, b\}$ and $\{a, c\}$ are g-open, w-open, α g-open and w α-open set but not srw-open set in X.

Thus the above discussion leads to the following implication diagram:

![Implication Diagram](image)

Remark 3.15 Union and intersection of two srw-open sets need not be srw-open set as shown in the following example 3.16.

Example 3.16 Let $X=\{a, b, c, d\}$ with topology $\tau=\{X, \emptyset, \{a, b, c\}, \{a, b, c\}\}$. Then $\text{SRWO}(X)=\{X, \emptyset, \{b, c\}, \{a, b, c\}\}$. Let $A=\{b\}$, $B=\{a, d\}$ and $C=\{b, c, d\}$. Here A and B are srw-open sets but $A \cup B = \{a, b, d\}$ is not srw-open. Also B and C are srw-open sets but $B \cap C = \{d\}$ is not srw-open set in X.

Theorem 3.17 If $A \subseteq X$ is srw-closed, then $\text{srcl}(A) \cap \text{srcl}(A)$ is srw-open set in X.

Proof: Let $A \subseteq X$ is srw-closed and let F be a rw-closed set such that $F \subseteq \text{srcl}(A) \setminus A$. Then by Theorem 3.19 of [16], $F=\emptyset$ that implies $F \subseteq \text{srcl}(A) \setminus A$ and Theorem 3.17 $\text{srcl}(A) \setminus A$ is srw-open set in X.

Theorem 3.18 A subset A of a topological space X is srw-open if and only if $F \subseteq \text{srcl}(A)$ whenever F is rw-closed and $F \subseteq A$.

Proof: Let $F \subseteq A$ is srw-closed and let F be a rw-closed set and $F \subseteq A$. Then $X \setminus A \subseteq X \setminus F$ where $X \setminus F$ is rw-open. Since $X \setminus A$ is srw-closed, $\text{srcl}(X \setminus A) \subseteq X \setminus F$ and hence $X \setminus \text{srcl}(A) \subseteq X \setminus F$ that implies $F \subseteq \text{sin}(A)$.

Conversely, suppose $F \subseteq \text{sin}(A)$ whenever $F \subseteq A$, F is rw-closed. To prove: A is srw-open. Suppose, $X \setminus U \subseteq A$ where U is rw-open. Then $X \setminus U \subseteq A$ where $X \setminus U$ is rw-closed. By assumption $X \setminus U \subseteq \text{sin}(A)$ that implies $\text{srcl}(X \setminus A) \subseteq U$. This proves that $X \setminus A$ is srw-closed and hence A is srw-open set in X.

Theorem 3.19 Every singleton point set in a space X is either srw-open or rw-open in X.

Proof: Let $x \in X$ where X is a topological space. To prove: $\{x\}$ is either srw-open or rw-open set in X i.e. to prove that $X \setminus \{x\}$ is either srw-closed or rw-open, which follows from Theorem 3.25 of [16]. The next Theorem shows that all the sets between $\text{sin}(A)$ and A are srw-open whenever A is srw-open.

Theorem 3.20 If $\text{sin}(A) \subseteq B \subseteq A$ and A is a srw-open set in X, then B is srw-open set in X.

Proof: Let $\text{sin}(A) \subseteq B \subseteq A$ and A is a srw-open set. Then $X \setminus A \subseteq X \setminus B \subseteq X \setminus \text{sin}(A)$ that implies $X \setminus A \subseteq X \setminus B \subseteq \text{srcl}(X \setminus A)$, since $X \setminus A$ is srw-open set. By Theorem 3.23 of [16], $X \setminus B$ is srw-closed set. Therefore B is srw-open in X.

Theorem 3.21 If $A \subseteq X$ is srw-closed, then $\text{srcl}(A) \setminus A$ is srw-open set in X.

Proof: Let $A \subseteq X$ is srw-closed set and F be a rw-closed set such that $F \subseteq \text{sin}(A) \setminus A$. By Theorem 3.19 of [16], $F=\emptyset$, so $F \subseteq \text{sin}(\text{srcl}(A) \setminus A)$ By Theorem 3.18 $\text{srcl}(A) \setminus A$ is srw-open set in X. The converse of above Theorem does not hold shown by example 3.22.

Example 3.22 Let $X=\{a, b, c, d\}$ with topology $\tau=\{X, \emptyset, \{a, b, c\}, \{a, b, c\}\}$. Then $A=\{a, c, d\}$ then $\text{srcl}(A)=\{b, c, d\}$ and $\text{srcl}(A) \setminus A=\{b\}$ is an srw-open set, but A is not an srw-closed set in X.

Theorem 3.23 If a subset A of X is srw-open in X and if G is rw-open in X with $\text{sin}(A) \cup (X \setminus A) \subseteq G$ then $G=\text{X}$.

Proof: Suppose that G is an rw-open set and $\text{sin}(A) \cup (X \setminus A) \subseteq G$. Now $(X \setminus A) \subseteq X \setminus \text{srcl}(A) \cap X \setminus (X \setminus A)$ implies that $(X \setminus G) \subseteq \text{srcl}(X \setminus A) \cap A$ Suppose A is srw-open. Since $X \setminus G$ is rw-open and $X \setminus A$ is srw-closed, then by Theorem 3.19 of [16], $X \setminus G=\emptyset$ and hence $G=X$.

The converse of the above Theorem need not be true in general as shown in example 3.24.
Example 3.24 Let $X=\{a, b, c, d\}$ with topology $\tau=\{X, \phi, \{a\}, \{b,c\}, \{a,b,c\}\}$. Then $\text{SRWO}(X) = \{X, \phi, \{a\}, \{b,c\}, \{a,b,c\}\}$.

$\text{RWO}(X) = \{X, \phi, \{a\}, \{b,c\}, \{a,b,c\}, \{c,d\}, \{b,d\}, \{a,c\}, \{a,b,c\}\}$.

Let $A=\{a, b, d\}$ and $B=\{a, b, c, d\}$.

$\text{sin}(A) \cup (X \setminus A) = \{a, d\} \cup \{c\} = \{a, c, d\}$.

So for some srw-open set G, such that $\text{sin}(A) \cup (X \setminus A) = \{a, c, d\} \subset G$ gives $G=X$ but A is not srw-open in X.

Theorem 3.25 Let X be a topological space and $A, B \subseteq X$. If B is srw-open and $\text{sin}(B) \subseteq A$, then $A \cap B$ is srw-open in X.

Proof: Since B is srw-open and $\text{sin}(B) \subseteq A$, then $\text{sin}(B) \subseteq A \cap B \subseteq B$, then by Theorem 3.32 of [16]. $A \cap B$ is srw-open set in X.

IV. SEMI REGULAR WEAKLY NEIGHBOURHOODS (BRIEFLY SRW-NHD)

Definition 4.1 Let (X, τ) be a topological space and let $x \in X$. A subset N is said to be srw-nhd of x, if and only if there exists a srw-open set G such that $x \in G \subseteq N$.

Definition 4.2 i) A subset N of X is a srw-nhd of $A \subseteq X$ in topological space (X, τ), if there exists an srw-open set G such that $A \subseteq G \subseteq N$.

ii) The collection of all srw-nhd of $x \in X$ is called srw-nhd system at $x \in X$ and shall be denoted by srw-N(x).

Theorem 4.3 Every neighborhood N of $x \in X$ is a srw-nhd of x.

Proof: Let N be neighborhood of point $x \in X$. To prove that N is a srw-nhd of x. By definition of neighborhood, there exists an open set G such that $x \in G \subseteq N$. Hence N is srw-nhd of x.

Remark 4.4 In general, a srw-nhd N of x in X, as shown from example 4.5.

Example 4.5 Let $X=\{a, b, c, d\}$ with topology $\tau=\{X, \phi, \{a\}, \{b,c\}, \{a,b,c\}\}$. Then $\text{SRWO}(X) = \{X, \phi, \{a\}, \{b,c\}, \{a,b,c\}\}$.

The set $\{a, b, d\}$ is srw-nhd of the point b, since the srw-open set $\{b\}$ is such that $b \in \{b\} \subset \{a,b,d\}$.

However, the set $\{a, b, d\}$ is not a neighbourhood of the point b, since no open set G exists such that $b \in G \subset \{a,b,d\}$.

Theorem 4.6 If a subset N of a space X is srw-open, and then N is a srw-nhd of each of its points.

Proof: Suppose N is srw-open. Let $x \in N$ we claim that N is a srw-nhd of x. For N is a srw-open set such that $b \in N \subset N$. Since x an arbitrary point of N, it follows that N is a srw-nhd of each of its points.

The converse of the above theorem is not true in general as seen from the following example 4.7.

Example 4.7 Let $X=\{a, b, c, d\}$ with topology $\tau=\{X, \phi, \{a\}, \{b,c\}, \{a,b,c\}\}$. Then $\text{SRWO}(X) = \{X, \phi, \{a\}, \{b,c\}, \{a,b,c\}\}$.

The set $\{a, b, c\}$ is srw-nhd of the point a, since the srw-open set $\{a\}$ is such that $a \in \{a\} \subset \{a\}$. Also the set $\{a, b, c\}$ is a srw-nhd of the point c, since the srw-open set $\{c\}$ is such that $c \in \{c\} \subset \{a,c\}$. i.e. $\{a, c\}$ is a srw-nhd of each of its points. However the set $\{a, c\}$ is not a srw-open set in X.

Theorem 4.8 Let X be a topological space. If F is a srw-closed subset of X and $x \in (X \setminus A)$, then there exists a srw-nhd N of x such that $N \cap F = \emptyset$.

Proof: Let F be srw-closed subset of X and $x \in (X \setminus F)$. Then $(X \setminus F)$ is an srw-open set of X. By Theorem 4.6, $(X \setminus F)$ contains a srw-nhd of each of its points. Hence there exists a srw-nhd N of x such that $N \cap F = \emptyset$.

Theorem 4.9 Let X be a topological space and for each $x \in X$, let srw-$N(x)$ be the collection of all srw-nhds of x. Then we have the following results.

i) $\forall x \in X$, srw-$N(x) \neq \emptyset$.

ii) $x \in \text{srw-N}(x) \Rightarrow x \in N$.

iii) $N \in \text{srw-N}(x)$ and $N \subseteq M \Rightarrow M \in \text{srw-N}(x)$.

iv) $N \in \text{srw-N} (x) \Rightarrow \exists M \in \text{srw-N} (y)$ for every $y \in M$.

Proof: i) Since X is an srw-open set, it is a srw-nhd of every $x \in X$. Hence there exists at least one srw-nhd(X) for each $x \in X$. Hence srw-$N(x) \neq \emptyset$ for every $x \in X$.

ii) If $N \in \text{srw-N}(x)$, then N is a srw-nhd of x. So, by definition of srw-nhd $x \in X$.

iii) Let $N \in \text{srw-N}(x)$ and $N \subseteq M$, then there is a srw-open set G such that $x \in G \subset N$. Since $N \subseteq M$, $x \in G \subset M$ and so M is a srw-nhd of x. Hence $M \in \text{srw-N}(x)$.

iv) If $N \in \text{srw-N}(x)$, then there exists an srw-open set M and is an srw-open set, it is a srw-nhd of each of its points. Therefore $M \in \text{srw-N}(y)$ for $y \in M$.
V. Semi-Regular Weakly Interior Operator

In this section, the notion of srw-interior is defined and some of its basic properties are studied.

Definition 5.1 Let A be a subset of X. A point \(x \in A \) is said to be srw-interior point of A, if A is a srw-nhd of x. The set of all srw-interior of A and is denoted by srw-int(A).

Definition 5.2 For a subset A of X, srw-interior of A is defined as srw-int(A) to be the union of all srw-open sets contained in A. In symbolically, \(\text{srw-int}(A) = \bigcup\{G \subset X : G \subseteq A \text{ and } G \text{ is srw-open in } X\} \).

Theorem 5.3 If A is a subset of X, then \(\text{srw-int}(A) = \bigcup\{G \subset X : G \subseteq A \text{ and } G \text{ is srw-open in } X\} \).

Proof: Let A be a subset of X. Let \(x \in \text{srw-int}(A) \) then applying srw.

Hence \(x \in \text{srw-int}(A) \). If A is a subset of X, then applying srw.

\(x \in \text{srw-int}(A) \) and \(G \subseteq A \) and G is srw-open in X.

Theorem 5.4 Let A and B are subsets of X. Then

i) \(\text{srw-int}(A) = X \) and \(\text{srw-int}(\phi) = \phi \).

ii) \(\text{srw-int}(A) \subset A \).

iii) If \(A \) is any srw-open set contained in \(A \), then \(B \subset \text{srw-int}(A) \).

iv) If \(A \subset B \), then \(\text{srw-int}(A) \subset \text{srw-int}(B) \).

v) \(\text{srw-int}(\text{srw-int}(A)) = \text{srw-int}(A) \).

Proof: i) Since X is only srw-open set contained in X. i.e. by definition 5.2, \(\text{srw-int}(A) = \bigcup\{G \subset X : G \text{ is srw-open, } G \subseteq A\} = X \cup \{\text{all srw-open sets}\} = X \). Hence \(\text{srw-int}(X) = X \).

Since \(\phi \) is only srw-open set contained in \(X \). Hence \(\text{srw-int}(\phi) = \phi \).

ii) Let \(x \in \text{srw-int}(A) \) then \(x \) is an srw-interior of A \(\Rightarrow \) A is an srw-nhd of x \(\Rightarrow \) \(x \in A \).

Hence \(x \in \text{srw-int}(A) \Rightarrow x \in A \). Hence \(\text{srw-int}(A) \subset A \).

iii) Let B be any srw-open set such that \(B \subset A \).

\(B \subset A \) then since B is srw-open set contained in A.

x is srw-interior point of A i.e. \(x \in \text{srw-int}(A) \).

Hence \(B \subset \text{srw-int}(A) \).

iv) Let A and B subsets of X such that \(A \subset B \) let \(x \in \text{srw-int}(A) \). Then x is srw-interior point of A and so A is srw-nhd of x. Since \(A \subset B \), B is also srw-nhd of x \(\Rightarrow x \in \text{srw-int}(B) \). Thus we have shown that \(x \in \text{srw-int}(A) \) \(\Rightarrow x \in \text{srw-int}(B) \).

Hence \(x \in \text{srw-int}(A) \subset x \in \text{srw-int}(B) \).

v) Let A be any subset of X. By the definition of srw-interior

\(\text{srw-int}(A) = \{G : G \subset A \text{ and } G \in \text{SRWO}(X)\} \).

if \(G \subset A \) then applying srw-interior on both sides, \(\text{srw-int}(G) \subset \text{srw-int}(A) \) \(\Rightarrow \)

\(G \subset \text{srw-int}(A) \). Since G is srw-open set contained in srw-int(A), i.e.

\(\text{srw-int}(\text{srw-int}(A)) = \text{srw-int}(A) \).

\(\text{srw-int}(\text{srw-int}(A)) \subset \text{srw-int}(\text{srw-int}(A)) \).

\(\text{srw-int}(\text{srw-int}(A)) \subset \text{srw-int}(\text{srw-int}(A)) \).

\(\text{srw-int}(\text{srw-int}(A)) = \text{srw-int}(A) \).

Theorem 5.7 If a subset A of X is srw-open, then \(\text{srw-int}(A) = A \).

Proof: Let A be srw-open subset of X. We know that \(\text{srw-int} (A) \subset A \). Also, A is srw-open set contained in A. From theorem 5.6(iii), A \(\subset \text{srw-int}(A) \).

Hence \(\text{srw-int}(A) = A \).

The converse of Theorem 5.7 need not be true as seen in the following example 5.8.

Example 5.8 Let X = \{a, b, c, d\} with topology \(\tau = \{X, \{a\}, \{b, c\}\} \) . Let \(\text{SRWO}(X) = \{X, \{a\}, \{b, c\}, \{a, b, c\}\} \).

Let \(A = \{a, b\} \) then \(\text{srw-int}(A) = A \) but A is not a srw-open set in X.

Theorem 5.9 If A and B are subsets of X, then

i) \(\text{srw-int}(A) \cup \text{srw-int}(B) \subset \text{srw-int}(A \cup B) \).

ii) \(\text{srw-int}(A \cap B) \subset \text{srw-int}(A \cap B) \).

Proof: i) We know that \(A \subset (A \cup B) \) and \(B \subset (A \cup B) \).

We have by Theorem 5.6(iii), \(A \subset \text{srw-int}(A \cup B) \) and \(B \subset \text{srw-int}(A \cup B) \).

This implies that \(\text{srw-int}(A) \cup \text{srw-int}(B) \subset \text{srw-int}(A \cup B) \).

ii) We know that \(A \subset (A \cup B) \) and \(B \subset (A \cup B) \).

We have by Theorem 5.6(iii), \(\text{srw-int}(A) \cup \text{srw-int}(B) \subset \text{srw-int}(A \cup B) \).

I.e. \(\text{srw-int}(A \cap B) \subset \text{srw-int}(A) \cap \text{srw-int}(B) \).

Theorem 5.10 If \(A \subset X \), then

i) \(\text{srw-int}(A) \subset vrw-int(A) \).
ii) $\sin t(A) \subset \text{srw-} \text{int}(A)$.

Proof:

i) Let A is subset of X. Let $x \in \text{srw-} \text{int}(A) \Rightarrow x \in \bigcup \{G : G$ is srw-open, $G \subset A\}$ then there exist an srw-open set G such that $x \in G \subset A$. Hence $\text{srw-} \text{int}(A) \subset \text{srw-} \text{int}(A)$.

ii) Let A be subset of X, let $x \in \text{srw-} \text{int}(A) \Rightarrow x \in \bigcup \{G \subset X : G$ is srw-open, $G \subset A\}$ implies that there exists a semi-open set G such that $x \in G \subset A$ then there exists a srw-open set G such that $x \in G \subset A$. As every semi open set is srw-open set in X. Therefore $x \in \text{srw-} \text{int}(A)$.

Remark 5.11 If A is subset of X, then

i) $A \subset \text{srw-} \text{int}(A)$.

ii) $\text{int}(A) \subset \text{srw-} \text{int}(A)$.

iii) $r- \text{int}(A) \subset \text{srw-} \text{int}(A)$.

Theorem 5.12 If A is subset of X, then $\text{srw-} \text{int}(A) \subset \text{gs-} \text{int}(A)$.

Proof: Let A be a subset of X, let $x \in \text{srw-} \text{int}(A) \Rightarrow x \in \bigcup \{G \subset X : G$ is srw-open, $G \subset A\}$ then there exists srw-open set G such that $x \in G \subset A$ then there exists open set G such that $x \in G \subset A$, as every srw-open set is gs-open set in X. Therefore $x \in \bigcup \{G \subset X : G \subset A\}$ is gs-open set in X. Therefore $x \in \text{gs-} \text{int}(A)$.

Thus $x \in \text{srw-} \text{int}(A) \Rightarrow x \in \text{gs-} \text{int}(A)$.

Hence $\text{srw-} \text{int}(A) \subset \text{gs-} \text{int}(A)$.

Remark 5.13 containment relations in the above theorem 5.10 may be proper as seen in the following example 5.12.

Example 5.14 Let $X=\{a, \ b, \ c, \ d\}$ with topology $\tau=\{X, \phi, \{a, b, c\}\}$. Let $\text{SRWO}(X)=\{X, \phi, \{a, b, c\}\}$. Let $A=\{a, b\}$ and $B=\{a, c\}$, then

i) $\text{srw-} \text{int}(A) \subset \text{srw-} \text{int}(A) \Rightarrow \{a\} \subset \{a, b\}$.

But $\text{srw-} \text{int}(A) \neq \text{srw-} \text{int}(A)$.

vi) $\text{srw-} \text{int}(A) \subset \text{gs-} \text{int}(A)$.

Remark 5.15 If A is subset of X, then $\text{srw-} \text{int}(A) \subset \text{gs-} \text{int}(A)$.

VI. Semi-Regular Weakly Closure Operator

Now we introduce the concept of srw-closure in topological spaces by using the notations of srw-closed sets and obtain some of their properties. For any $A \subset X$, it is proved that the complement of srw-interior of srw-closure of the complement of A.

Definition 6.1 For a subset A of X, srw-closure of A is defined as srw-cl(A) to be the intersection of all srw-closed sets containing A. In symbolically, srw-cl(A) is ${\bigcap \{F \subset X : A \subset F \text{ and } F \in \text{SRWO}(X)\}}$.

Theorem 6.2 If A and B are subsets of a space X. Then

i) srw-cl$(X)=X$ and srw-cl$(\phi)=\phi$.

ii) $A \subset \text{srw-} \text{cl}(A)$.

iii) If B is any srw-closed set containing A then $\text{srw-} \text{cl}(A) \subset B$.

iv) If $A \subset B$ then $\text{srw-} \text{cl}(A) \subset \text{srw-} \text{cl}(B)$.

v) $\text{srw-} \text{cl}(A)=\text{srw-} \text{cl}(\text{srw-} \text{cl}(A))$.

Proof:

i) By definition 3.1, X is the only srw-closed set containing X. Therefore srw-cl$(X)={\bigcap A \subset \text{srw-} \text{cl}(A)}$.

ii) By definition 6.1, it is obvious that $A \subset \text{srw-} \text{cl}(A)$.

iii) Let B be any srw-closed set containing A. Since srw-cl(A) is the intersection of all srw-closed sets containing A, srw-cl(A) is contained in every srw-closed set containing A. Hence in particular srw-cl$(A) \subset B$.

iv) Let A and B be subsets of X such that $A \subset B$.

By definition 6.1. If $B \subset F \in \text{SRWC}(X)$, then $\text{srw-} \text{cl}(B) \subset F$.

Since $A \subset B$, $A \subset B \subset F \in \text{SRWC}(X)$.

We have $\text{srw-} \text{cl}(A) \subset F$.

Therefore $\text{srw-} \text{cl}(B) \subset \{F : B \subset F \in \text{SRWC}(X)\}$.

v) Let A be any subset of X. By definition 6.1. If $A \subset F \in \text{SRWC}(X)$, then $\text{srw-} \text{cl}(A) \subset F$.

Since F is srw-closed set containing srw-cl(A), by (iii) $\text{srw-} \text{cl}(\text{srw-} \text{cl}(A)) \subset F$.

Hence $\text{srw-} \text{cl}(\text{srw-} \text{cl}(A)) \subset$
\[\{F : A \subseteq F \in \text{SRWC}(X)\} = \text{srw-cl}(A). \] i.e. \(\text{srw-cl}(\text{srw-cl}(A)) = \text{srw-cl}(A) \).

Remark 6.3 i) \(\text{srw-closure} \) of a set \(A \) is not always \(\text{srw-closed}. \)

ii) If \(A \subseteq X \) is \(\text{srw-closed} \), then \(\text{srw-cl}(A) = A \).

Proof: ii) Let \(A \) be \(\text{srw-closed subset of} X \). We know that \(A \subseteq \text{srw-cl}(A) \). Also \(A \subseteq A \) and \(A \) is \(\text{srw-closed}. \) By the theorem 6.2 (iii), \(\text{srw-cl}(A) \subseteq A \). Hence \(\text{srw-cl}(A) = A \). However if \(\text{srw-cl}(A) = A \) then it is not true that \(A \) is \(\text{srw-closed} \) as seen from following example.

Example 6.4 Let \(X = \{a, b, c, d\} \) with topology \(\tau = \{X, \phi, \{a, b, c\}, \{a, b, c, d\}\} \). Let \(A = \{b\} \) then \(\text{srw-cl}(A) = \{b\} \) but \(A \) is not a \(\text{srw-closed set}. \)

Theorem 6.5 If \(A \) and \(B \) are subsets of a space \(X \), then

i) \(\text{srw-cl}(A \cap B) \subseteq \text{srw-cl}(A) \cap \text{srw-cl}(B) \).

ii) \(\text{srw-cl}(A) \cup \text{srw-cl}(B) \subseteq \text{srw-cl}(A \cup B) \).

Proof: Let \(A \) and \(B \) be subsets of \(X \).

i) Clearly \(A \cap B \subseteq A \) and \(A \cap B \subseteq B \). By Theorem 6.2 (iv), \(\text{srw-cl}(A \cap B) \subseteq \text{srw-cl}(A) \) and \(\text{srw-cl}(A \cap B) \subseteq \text{srw-cl}(B) \). Hence \(\text{srw-cl}(A \cap B) \subseteq \text{srw-cl}(A) \cap \text{srw-cl}(B) \).

ii) Clearly \(A \subseteq (A \cup B) \) and \(B \subseteq (A \cup B) \). By Theorem 6.2 (iv), \(\text{srw-cl}(A) \subseteq \text{srw-cl}(A \cup B) \) and \(\text{srw-cl}(B) \subseteq \text{srw-cl}(A \cup B) \). Hence \(\text{srw-cl}(A) \cup \text{srw-cl}(B) \subseteq \text{srw-cl}(A \cup B) \).

Theorem 6.6 If \(A \) is a subset of a space \(X \), then

i) \(\text{srw-cl}(A) \subseteq \text{srw-cl}(A) \).

ii) \(\text{srw-cl}(A) \subseteq \text{cl}(A) \).

Proof: Let \(A \) be subset of space \(X \).

i) From lemma 2.4 (i), if \(A \subseteq F \in \text{cRWC}(X) \), then \(A \subseteq \overline{F} \). Hence every \(\text{srw-closed} \) subset \(F \) closed. That is \(\text{srw-cl}(A) \subseteq F \).

Therefore \(\text{srw-cl}(A) \subseteq \cap \{F : A \subseteq F \in \text{cRWC}(X)\} = \text{srw-cl}(A) \).

ii) From lemma 2.4 (ii), if \(A \subseteq F \) and \(F \) is semi closed subset of \(X \) then \(A \subseteq \overline{F} \subseteq X \).

Remark 6.7 Containment relations in the above theorem 6.6 may be proper as seen in the following example 6.7.

Example 6.8 Let \(X = \{a, b, c\} \) with topological space \(\tau = \{X, \phi, \{a, b, c\}, \{a, b, c, d\}\} \). \(\text{SRWC}(X) = \{X, \phi, \{a, d\}, \{b, c\}, \{a, d\}, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}\} \). Let \(A = \{a\} \) and \(B = \{a, b, d\} \) then \(\text{srw-cl}(A) = \{a\}, \text{srw-cl}(A) = \{a, d\}, \text{cl}(B) = X, \text{cl}(B) = \{a, b, d\} \).

i) \(\text{srw-cl}(\{a\}) \subseteq \text{srw-cl}(\{a\}) \Rightarrow \{a\} \subseteq \{a, d\} \). But \(\text{srw-cl}(A) \neq \text{srw-cl}(A) \).

ii) \(\text{srw-cl}(\{a\}) \subseteq \text{cl}(\{a\}) \Rightarrow \{a\} \subseteq \{a, d\} \). But \(\text{srw-cl}(A) \neq \text{cl}(A) \).

Remark 6.9 If \(A \) is a subset of a space \(X \), then

i) \(\text{srw-cl}(A) \subseteq \phi - \text{cl}(A) \).

ii) \(\text{srw-cl}(A) \subseteq \text{cl}(A) \).

iii) \(\text{srw-cl}(A) \subseteq \phi - \text{cl}(A) \).

Theorem 6.10 If \(A \) is a subset of a space \(X \), then \(\text{gs-cl}(A) \subseteq \text{srw-cl}(A) \).

Proof: Let \(A \) be a subset of space \(X \). From lemma 2.4 (iii), if \(A \subseteq F \in \text{SRWC}(X) \), then \(A \subseteq \mathcal{GSC}(X) \), because every \(\text{srw-closed} \) subset is \(\text{gs-closed} \). That is \(\text{gs-cl}(A) \subseteq F \). Therefore \(\text{gs-cl}(A) \subseteq \cap \{F : A \subseteq F \in \text{SRWC}(X)\} = \text{srw-cl}(A) \).

Remark 6.11 If \(A \) is a subset of a space \(X \), then \(\text{gs-cl}(A) \subseteq \text{srw-cl}(A) \).

Theorem 6.12 Let \(\overline{x} \in X \), then \(\overline{x} \) is \(\text{srw-cl}(A) \) if and only if \(V \cap A = \phi \) for every \(\text{srw-open set} V \) containing \(x \).

Proof: Let \(x \in \text{srw-cl}(A) \). Suppose there exists a \(\text{srw-open set} V \) containing \(x \) such that \(V \cap A = \phi \).

Since \(A \subseteq X \setminus V \) and by 6.2 (iv), \(\text{srw-cl}(A) \subseteq X \setminus V \). This implies \(x \in \text{srw-cl}(A) \) which is contradiction.

Conversely, we assume that \(V \cap A = \phi \) for every \(\text{srw-open set} V \) containing \(x \). Suppose \(x \notin \text{srw-cl}(A) \), then by definition 6.2 (i), there exists a \(\text{srw-closed subset} F \) containing \(A \) such that \(x \notin X \). Therefore \(x \in X \setminus F \) and \(X \setminus F \) is an \(\text{srw-open} \). Since \(A \subseteq F \), \(\text{X} \setminus F \cap A = \phi \) which is impossible as \(x \in X \setminus F \) and \(x \in A \). Hence \(x \notin \text{srw-cl}(A) \).

Theorem 6.13 Let \(A \) be a subset of \(X \). Then

i) \(X \setminus \text{srw-int}(A) = \text{srw-cl}(X \setminus A) \)

ii) \(\text{srw-int}(A) = X \setminus \text{srw-cl}(X \setminus A) \)

iii) \(\text{srw-cl}(A) = X \setminus (\text{srw-int}(X \setminus A)) \)

Proof: (i) Let \(x \in X \setminus \text{srw-int}(A) \). Then \(x \notin \text{srw-int}(A) \), i.e. every \(\text{srw-open set} U \)
containing \(x \) is such that \(U \not\subseteq A \). i.e. every srw-open set \(U \) containing \(x \) is such that \(U \cap X \setminus A \neq \emptyset \). By Theorem 6.12,
\[x \in \text{srw} - \text{cl}(X \setminus A) \]. Therefore
\[X \setminus (\text{srw} - \text{int}(A)) \subset \text{srw} - \text{cl}(X \setminus A). \]
Conversely, let \(x \in \text{srw} - \text{cl}(X \setminus A) \). Then by Theorem 6.12, every srw-open set \(U \) containing \(x \) is such that \(U \cap X \setminus A \neq \emptyset \). i.e. every srw-open set \(U \) containing \(x \) is such that \(U \not\subseteq A \) implies that by definition of \(\text{srw-int}(A) \), \(x \in \text{srw} - \text{int}(A) \). i.e.
\[x \in X \setminus (\text{srw} - \text{int}(A)) \quad \text{and} \quad \text{srw} - \text{cl}(X \setminus A) \subset X \setminus (\text{srw} - \text{int}(A)). \]
Thus
\[X \setminus (\text{srw} - \text{int}(A)) = \text{srw} - \text{cl}(X \setminus A). \]

(i) By taking complements to above (i).

(ii) Follows by replacing \(A \) by \(X \setminus A \) in (i).

VII. CONCLUSION
In this article we have studied most of the basic properties. With the help of these properties we will investigate srw-continuous and irresolute functions in topological spaces and fuzzy topological spaces.

REFERENCES
