e-Supplement Submodules and e-Supplemented Modules

Inaam, M.A.Hadi

Department of Mathematics,
College of Education for Pure Science, University of Baghdad

Hassan K. Marhoon

Habibullah Middle School,
Directorate-General for Education Rasafa,
Ministry of Education

Abstract

In this paper, we introduce the concepts e-supplement submodules and e-supplemented modules. We study these concepts and give some basic properties about them.

Key words:

1. Introduction

Let R be a commutative ring with 1 ≠ 0 and M is a unitary R-module. A submodule N of M is called essential (denoted by N ⊆ M), if for any nonzero submodule K of M, K ∩ N ≠ (0) [2]. And a proper submodule N of M is called small submodule (denoted by N ⊆ M), if N + K ∩ M, for any proper submodule K of M [2]. Recall that a submodule N of an R-module M is called e-small (denoted by N ⊆∗ M), if whenever N + K = M with K ⊆ M, then N ∩ K = (0) [5]. A submodule N is called closed submodule if for each nonzero submodule N of M (denoted by N ⊆ M), if N has no proper essential extension submodule in M, that is if N ⊆∗ K ⊆ M, then N = K [2]. The concept of supplement submodule appeared in [4], where a submodule N of an R-module M is called a supplement submodule in M if M = N + K for some submodule K of M and N is a minimal submodule with this property. In section 3 we introduce e-supplemented module, if every submodule of M has an e-supplement submodule.

2. e-Supplemented Submodules

In this section we present a new concept namely e-supplement submodule. We study this concept and give some of its basic properties.

Definition 2.1:

Let U ⊆ M. An essential submodule V of M is called e-supplement of U if U + V = M and V is a minimal essential in M with this property.

The following is a characterization of e-supplement submodule.

Theorem 2.2:

Let V ⊆∗ M, V is e-supplement of U if and only if M = U + V and U ∩ V ⊆∗ V.

Proof:

(⇒)

Let V ⊆∗ V. If V is e-supplement of U, so U + V = M. To prove U ∩ V ⊆∗ V.

Assume (U ∩ V) + K = V, for some K ⊆ V. Then M = U + (U ∩ V) + K, hence M = U + K. But K ⊆ V and V ⊆∗ M, so K ⊆∗ M. On the other hand, K ⊆ V and V is a minimal essential in M with the property U + V = M. Thus K = V and hence U ∩ V ⊆∗ V.

(⇐) suppose M = U + V and U ∩ V ⊆∗ V. To prove V is e-supplement of U, let K ⊆∗ M and K ⊆ V such that M = U + K, we must prove K = V. Since K ⊆∗ M and K ⊆ V, then K ⊆∗ V.

But V = M ∩ V = (U + K) ∩ V = K + (U ∩ V) by modular law. As (U ∩ V) ⊆∗ V and K ⊆∗ V, imply that K = V and hence V is e-supplement of U.

Remarks and Examples 2.3:

1- A supplement submodule need not be e-supplement, for example: < 3 > is a supplement of < 2 > in the Z-module Z, but < 3 > is not e-supplement, since < 3 > ⊆∗ Z.
2- e- supplement submodule need not be supplement, for example: \(< Z > \supseteq Z_d \leq_s Z_d \), \(< Z > \) is an e-supplement \(Z_d \), but \(< Z > \) is not supplement submodule of \(Z_d \).

3- \(Z\rho\) is a supplement of \(N \) (for each \(N\leq_s Z\rho\)). Also it is e-supplement

4- \(Z_d \) is a supplement of any \(N\leq Z_d \). Also it is e-supplement

Proposition 2.4:

Let \(A,N,K \) be submodules of an \(R \)-module \(M \) such that \(N \) is e-supplement of \(M \) and \(A \) is e-supplement of \(K \) in \(M \), then \(A \) is e-supplement of \(N \) in \(M \).

Proof:

Since \(N \) is e-supplement of \(A \), then \(N\leq M \) and \(A+N=M \). Also \(N \leq N \), and since \(A \) is e-supplement of \(K \) in \(M \), then \(A\leq M \). And, \(A+K=M \), \(A \) is minimal essential with the property \(A+K=M \).

To prove \(A \) is e-supplement of \(N \). Since \(A\leq M \), \(A+N=M \), so it is enough to show that \(A \) is minimal essential in \(M \) with the property \(A+N=M \). Let \(L \leq M \) and \(L \leq A \) such that \(L+N=M \). To prove \(L=A \). Since \(A=M\cap A=(L\cap A)+(N\cap A) \) by modular law, then \(M=+(N\cap A)=(L\cap A)+(L+K) \). But \((N\cap A)\leq N \), then \(N\cap A \leq_i M \), also \(L\leq M \), implies \(L\leq K \leq M \). Hence \(M=L+K \). But \(A \) is e-supplement of \(K \) and \(L\leq M \), \(L \leq A \), so that \(L=A \). Thus \(A \) is e-supplement of \(N \).

Proposition 2.5:

Let \(A \), \(N \) be submodules of an \(R \)-module \(M \) such that \(N\leq A \). If \(N \) is e-supplement in \(M \), then \(N \) is e-supplement of \(A \).

Proof:

Since \(N \) is e-supplement in \(M \), then \(N\leq M \) and there exists \(K \leq M \) such that \(N+K=M \), \(N\cap K\leq N \), \(\ldots \) (1). Now \(A=M\cap A=(K+N)\cap A=N+(K\cap A) \) by modular law. Since \(N\cap K\leq M \), \(N\cap K\leq N \). Also \(N\leq A \). Thus \(N \) is e-supplement of \(K\cap A \) in \(A \).

Proposition 2.6:

Let \(M \) be an \(R \)-module, let \(A\leq N\leq M \) with \(N \) is an e-supplement in \(M \), then \(A \) is an e-supplement in \(N \) if and only if \(A \) is an e-supplement in \(M \).

Proof:

Since \(N \) is an e-supplement in \(M \), then \(N\leq M \) and there exists \(K \leq M \) such that \(N+K=M \) and \(N \) is minimal essential with this property. To prove that \(A \) is an e-supplement in \(M \). As \(A \) is an e-supplement in \(N \), so \(A\leq N \) and there exists \(L\leq N \) such that \(A+L=N \) and \(A \) is minimal essential submodule of \(N \) with this property. It follows that \(M=N+K=A+(L+K) \).

Since \(A\leq N \) and \(N\leq M \), we get \(A\leq_M \). Let \(B\leq L \), \(B\leq A \) such that \(B+L=N \), so \(B+L+K=M \). But \(B\leq M \), then \(B+L \leq M \). Also \(B+L \leq N \) and since \(N \) is minimal essential such that \(N+K=M \), so that \(B+L=N \), but \(B\leq A \) and \(A \) is a minimal essential submodule such that \(A+L=N \), so \(B=A \) and \(A \) is minimal essential with property \(A+(L+K)=M \); i.e. \(A \) is an e-supplement of \(L+K \).

(\(\Rightarrow \)) It follows by Proposition 2.5.

Proposition 2.7:

Let \(M_1 , M_2 \) be \(R \)-module, \(M=\bigoplus \) \(M_1 \). If \(A \) is an e-supplement of \(K_1 \) in \(M_1 \), \(B \) is an e-supplement of \(K_2 \) in \(M_2 \). Then \(A\bigoplus B \) is an e-supplement of \(K_1 \bigoplus K_2 \) in \(M \bigoplus M_2 \).

Proof:

\(A \) is an e-supplement of \(K_1 \) in \(M_1 \), then \(A\leq M_1 \) with \(A+K_1=M_1 \) and \(A\cap K_1\leq A \). \(B \) is an e-supplement of \(K_2 \) in \(M_2 \), then \(B\leq M_2 \) with \(B+K_2=M_2 \) and \(B\cap K_2\leq B \).

Now, \(M_1 \bigoplus M_2 =(A+K_1)\bigoplus (B+K_2) \). Also \((A+K_1)\bigoplus (B+K_2) \leq (A\bigoplus B) \) \(\bigoplus \) \((K_1\bigoplus K_2) \), \(\ldots \) (5, Proposition 2.5 (3)).

But \(A\leq M_1 \) and \(B\leq M_2 \), imply \(A\bigoplus B \leq M_1 \bigoplus M_2 \) \(\ldots \) (2, Proposition 1.3). Thus \(A\bigoplus B \) is an e-supplement of \(K_1 \bigoplus K_2 \).

Proposition 2.8:

Let \(M \) be an \(R \)-module, if \(A \) is an e-supplement of \(K \leq M \), let \(N\leq A \) and \(N \) is closed in \(M \), then \(A\bigoplus N \) is an e-supplement in \(M \).

Proof:
A is an e-supplement of K in M, so \(A \leq M \) and \(A + K = M \), \(A \cap K \ll_e A \). To prove that \(\frac{A}{N} \) is an e-supplement in \(\frac{M}{N} \). First since \(N \leq M \) and \(N \leq A \leq M \), then \(\frac{A}{N} \leq \frac{M}{N} \) by [2, Proposition 1.4, P.18]. Now, \(A + K = M \) implies \(\frac{A + K}{N} = \frac{M}{N} \), hence \(\frac{A + K}{N} = \frac{M}{N} \).

We claim that \(\frac{A}{N} \cap \frac{K + N}{N} \ll_e \frac{A}{N} \). Since \(\frac{A}{N} \cap \frac{K + N}{N} = \frac{A \cap (K + N)}{N} = \frac{N + (A \cap K)}{N} \) by modules law. Thus

\[
\frac{A}{N} \cap \frac{K + N}{N} = \frac{N + (A \cap K)}{N}.
\]

Let \(\frac{L}{N} \leq \frac{A}{N} \) such that \(\frac{N + (A \cap K)}{N} + \frac{L}{N} = \frac{A}{N} \). Then \(N + (A \cap K) + L = A \) and hence \((A \cap K) + L = A \). But \(L \leq \frac{A}{N} \), implies \(L \subseteq A \) and since \(A \cap K \ll_e A \), then \(L = A \); that is \(\frac{L}{N} = \frac{A}{N} \). It follows that \(\frac{N}{N} \cap \frac{K + N}{N} \ll_e \frac{A}{N} \), so \(\frac{A}{N} \) is an e-supplement of \(\frac{K + N}{N} \).

Remark 2.9:

If \(A \) is an e-supplement of \(B \) and \(B \) is an e-supplement of \(C \), then it is not necessarily that \(A \) is an e-supplement of \(C \). For example, let \(V = \langle 2 \rangle \leq \langle 4 \rangle \). \(V \) is an e-supplement of \(\langle 4 \rangle \), and \(\langle 4 \rangle \) is an e-supplement of \(\langle 8 \rangle \). But \(V \) is not an e-supplement of \(\langle 8 \rangle \).

Recall that an \(R \)-module is called a multiplication module if for every submodule \(N \) of \(M \), there exists an ideal \(I \) of \(R \) such that \(IM = N \). Equivalently, \(M \) is a multiplication module if for every submodule \(N \) of \(M \), \(N = (N:IM) \). [1]

To prove the next result, we prove first the following lemma:

Lemma 2.10:

Let \(M \) be a finitely generated faithful multiplication \(R \)-module and let \(I \leq J \leq R \). If \(I \ll_e J \), then \(IM \ll_e JM \).

Proof:

Let \(K \subseteq JM \). As \(K \leq M \), \(K = LM \) for some \(L \leq R \), since \(M \) is a multiplication \(R \)-module. Assume that \(IM + K = JM \), so \(IM + LM = JM \). But \(M \) is a finitely generated faithful multiplication \(R \)-module, so \(I + L = J \). But we can show that \(L \leq J \) as follows, suppose \(T \in J \) and \(T \cap L = 0 \). Then \((T \cap L)M = 0 \) and hence \(TM \cap LM = 0 \). But \(K = LM \leq JM \), so \(TM \leq JM \), hence \(T = 0 \) which implies \(L \leq J \). But \(I \ll_e J \), so \(L = J \). Thus \(K = LM = JM \) and \(IM \ll_e JM \).

Proposition 2.11:

Let \(M \) be a finitely generated faithful multiplication \(R \)-module and let \(N \leq M \). Then \(N \) is an e-supplement in \(M \) if and only if \([N:M] \) is an e-supplement in \(R \).

Proof:

\((\Rightarrow) \) If \(N \) is an e-supplement in \(M \), then \(N \leq M \) and there exists \(K \leq M \) such that \(N + K = M \) and \(N \cap K \ll_e N \). Since \(N \leq M \) and \(M \) is finitely generated faithful multiplicative \(R \)-module, then \([N:M] \leq R \). Also \(N + K = M \), implies \([N:M] + [K:M] = R \). To prove \([N:M] \cap [K:M] \ll_e [N:M] \). First \([N:M] \cap [K:M] = [N \cap K : M] \). Let \(I \leq [N:M] \). If \([N \cap K : M] + I = [N:M] \), then \([N \cap K : M] + I \subseteq [N:M : M] \), \([N \cap K : M] + I \subseteq N \). But \(I \leq [N:M] \), then \(IM \subseteq N \) [by Lemma 2.10] and since \(N \cap K \ll_e N \), so \(IM = N = [N:M]M \). As \(M \) is a finitely generated faithful multiplication, we get \(I = [N:M] \).

Thus \([N \cap K : M] \ll_e [N:M] \).

\((\Leftarrow) \) If \([N:M] \) is an e-supplement in \(R \), then \([N:M] \leq R \) and there exists \(J \leq R \) such that \([N:M] + J = R \), \([N:M] \cap J \ll_e [N:M] \). Then \(N + JM = M \). But \([N:M] \leq R \) implies \(N \leq [N:M] \) [1, Th. 2.13].

Thus \(N \) is an e-supplement in \(M \).

3. e-Supplemented Modules

In this section, we introduce a new class of module namely e-supplemented module, by using the concept of e-supplement submodule. This class of modules is a generalization of the class of supplemented modules.

Definition 3.1:

M is called an e-supplemented \(R \)-module if every submodule of \(M \) has an e-supplement submodule.

Example 3.2:

1. Consider \(Z_4 \) as \(Z \)-module,
 \(\langle 2 \rangle \) has an e-supplement in \(Z_4 \) which is \(Z_4 \), \(\langle 2 \rangle \) has an e-supplement in \(Z_4 \) which is \(Z_4 \).
 \(Z_4 \) has an e-supplement \(\langle 2 \rangle \). Thus \(Z_4 \) is an e-supplemented module

2. Consider \(Z_6 \) as \(Z \)-module, since each submodule of \(Z_6 \) has an e-supplement submodule which is \(Z_6 \). Thus \(Z_6 \) is an e-supplemented module.
3- Consider the Z-module Z , <Z> has an e-supplement Z . Let N< Z , then N=nZ , for some nÎZ, n>1 . Suppose mZ is an e-supplement of nZ , then nZ+mZ=Z . Thus g.c.d (m,n)=1 , so nZ + m'Z=Z and m'Z Î mZ=Z . If m≠±1 , then g.c.d (n,m')=1 , so nZ + m'Z=Z and m'Z Î mZ , so every proper submodule of Z has no e-supplement . Thus Z as Z-module is not e-supplemented Z-module.

Remark 3.3:
Let M be a semisimple R-module . Then M is e-supplement

Proof:
Since M is semisimple , then M is the only essential submodule of M and for each NÎM , N+M=M and N∩M=N∩M ; that is M is an e-supplement submodule of each submodule N of M

Definition 3.4:
1- Let N be a submodule of a module M . N is called e-weakly supplement of A in M if N≤M , N+A=M and N∩A≠N . M is called an e-weakly supplemented if every submodule of M has an e-weakly supplement.
2- M is called an e-amply supplement module if for any two submodule X and Y of M with M=X+Y , Y contains an e-supplement of X in M .

Remark 3.5:
For an R- module M. It is clear that
1- M is an amply e-supplemented module implies M is e-supplemented .

Proposition 3.6:
For an R-module M such that Rad,M(=0) . The following statements are equivalent :
1- M is a semisimple module .
2- M is an supplement module .
3- M is an e-weakly supplement module.

Proof:
(1) → (2) Since M is semisimple , then M the only essential in M and M+N=M , M∩N=N for any N≤M . But we can show that N≤N as follows. Let N+U=N U≤N . But N is semisimple , then the only essential in N is N it is self , so U=N and hence N≤N.
(2) → (3) It is clear ..
(3) → (1) Let N≤M , so there exists K≤M , K is e-weakly supplement , then N+K=M and N∩K≠K . But Rad,M(=0) , then N∩K(=0) . Thus N≤K .

Proposition 3.7:
Let M , M be R-modules and f:M → M be an R-epimorphism . If M is an e-supplemented module (e-supplemented or e-weakly supplemented) module then so is M .

Proof:
If M is an e-weakly supplemented module . Let X,Y ≤M , such that M/X=Y . Then f(X)+f(Y)=M (since f is onto) . But M is an e-weakly supplemented module , then f(X) contains C of f(Y) in M , if f(X)+C=M and f(X∩C)≤C . Now it is clear that X+ f(Y)=M . We claim that X∩f(Y) ≤ f(Y) , where f(C) ≤ Y . Since f(X)∩C≤C , then f(f(C))≤f(Y) . Hence X∩f(X∩C)≤f(Y) . Let y∈X∩f(Y) , then y=f(c) , for some c∈C , y=f(c)∈X , then X∩f(c)≤f(f(X∩C))≤f(Y) , thus f(Y) is an e-supplement of X in M .

The proof in similarly for M is e-supplemented module and M is an e-weakly supplemented module.

References