Fourier series involving certain products of generalized class of polynomials, Aleph-function and the multivariable Aleph-function

\textit{F.Y. AYANT}^{1}

1 Teacher in High School, France

ABSTRACT

The aim of the present document is to establish some finite integrals and Fourier serie expansion for the products of class of polynomials, Aleph-function and multivariable Aleph-function. The results established in this paper are of general nature and hence encompass several particular cases.

Keywords: Multivariable Aleph-function, Aleph-function, Fourier serie, general class of polynomials.

2010 Mathematics Subject Classification. 33C99, 33C60, 44A20

1. Introduction and preliminaries.

The Aleph- function, introduced by Südland [10] et al., however the notation and complete definition is presented here in the following manner in terms of the Mellin-Barnes type integral:

\begin{equation}
N(z) = N_{P, Q, c, r}^{M, N} \left(\left. \begin{array}{c}
(a_j, A_j)_{1, n}, [c_i(a_{ji}, A_{ji})]_{n+1, p_i, r} \\
(b_j, B_j)_{1, m}, [c_i(b_{ji}, B_{ji})]_{m+1, q_i, r}
\end{array} \right| z \right)
\end{equation}

\begin{equation}
= \frac{1}{2\pi \omega} \int_{L} \Omega_{P, Q, c, r}^{M, N}(s) z^{-s} ds
\end{equation}

for all \(z \) different to 0 and

\begin{equation}
\Omega_{P, Q, c, r}^{M, N}(s) = \frac{\prod_{j=1}^{M} \Gamma(b_j + B_j s) \prod_{j=1}^{N} \Gamma(1 - a_j - A_j s)}{\sum_{i=1}^{r} c_i \prod_{j=N+1}^{P_i} \Gamma(a_{ji} + A_{ji} s) \prod_{j=M+1}^{Q_i} \Gamma(1 - b_{ji} - B_{ji} s)}
\end{equation}

With:

\(| arg z | < \frac{1}{2} \pi \Omega \) \quad \text{Where} \quad \Omega = \sum_{j=1}^{M} \beta_j + \sum_{j=1}^{N} \alpha_j - c_i(\sum_{j=M+1}^{Q_i} \beta_j + \sum_{j=N+1}^{P_i} \alpha_j) > 0 \quad \text{with} \quad i = 1, \cdots, r

For convergence conditions and other details of Aleph-function, see Südland et al [10].

Serie representation of Aleph-function is given by Chaurasia et al [1].

\begin{equation}
N_{P, Q, c, r}^{M, N}(z) = \sum_{G=1}^{M} \sum_{g=0}^{\infty} \left(- \right)^{g} \Omega_{P, Q, c, r}^{M, N}(s) z^{-s}
\end{equation}

With \(s = \eta G, g = \frac{b_G + g}{B_G}, P_i < Q_i, | z | < 1 \) and \(\Omega_{P, Q, c, r}^{M, N}(s) \) is given in (1.2)

The Aleph-function of several variables generalize the multivariable h-function defined by H.M. Srivastava and R. Panda [9], itself is an a generalisation of G and H-functions of multiple variables. The multiple Mellin-Barnes integral occurring in this paper will be referred to as the multivariables Aleph-function throughout our present study and will be defined and represented as follows.

ISSN: 2231-5373 \hspace{1cm} \text{http://www.ijmttjournal.org}
We have:
\[N(z_1, \ldots, z_r) = \prod_{i=1}^{p_i} n_i^{a_{ij}} n_i^{P_i(i)} n_i^{\tau_{i(i)}} n_i^{R(i)} \ldots \prod_{r=1}^{P_i(r)} n_i^{\tau_{i(r)}} n_i^{R(r)} \left(\begin{array}{c} z_1 \\ \vdots \\ z_r \end{array} \right) \]

\[= \prod_{i=1}^{p_i} \left[\tau_i(a_{ij}) \gamma_j^{(i)} \beta_j^{(i)} \cdots \tau_i(b_{ij}) \beta_j^{(i)} \right] \]

\[= \prod_{i=1}^{p_i} \left[\tau_i(c_{ij}) \gamma_j^{(i)} \beta_j^{(i)} \cdots \tau_i(d_{ij}) \beta_j^{(i)} \right] \]

\[= \frac{1}{(2\pi \omega)^r} \int_{L_1} \cdots \int_{L_r} \psi(s_1, \ldots, s_r) \prod_{k=1}^{r} \theta_k(s_k) z_k^{s_k} ds_1 \cdots ds_r \] \hspace{1cm} \text{(1.5)}

with \(\omega = \sqrt{-1} \)

\[\psi(s_1, \ldots, s_r) = \prod_{i=1}^{r} \frac{\Gamma(1 - a_j + \sum_{k=1}^{r} b_{ij} s_k)}{\prod_{j=n+1}^{n} \Gamma(1 - a_j + \sum_{k=1}^{r} b_{ij} s_k) \prod_{j=1}^{n} \Gamma(1 - c_j + \sum_{k=1}^{r} b_{ij} s_k)} \] \hspace{1cm} \text{(1.6)}

and \(\theta_k(s_k) = \prod_{i=1}^{r} \frac{\Gamma(d_k^{(i)} + s_k)}{\prod_{j=m+k+1}^{m+1} \Gamma(1 - d_k^{(i)} + s_k) \prod_{j=n+k+1}^{n+1} \Gamma(1 - c_j + \sum_{k=1}^{r} b_{ij} s_k)} \] \hspace{1cm} \text{(1.7)}

where \(j = 1 \) to \(r \) and \(k = 1 \) to \(r \)

Suppose, as usual, that the parameters:

\[a_j, j = 1, \ldots, p; b_j, j = 1, \ldots, q; \]

\[c_j^{(k)}, j = 1, \ldots, n_k; c_j^{(i)}; j = n_k + 1, \ldots, p_i; \]

\[d_j^{(k)}, j = 1, \ldots, m_k; d_j^{(i)}; j = m_k + 1, \ldots, q_i; \]

with \(k = 1, \ldots, r, i = 1, \ldots, R, i^{(k)} = 1, \ldots, R^{(k)} \)

are complex numbers, and the \(\alpha', \beta', \gamma' \) and \(\delta' \) are assumed to be positive real numbers for standardization purpose such that

\[U_i^{(k)} = \sum_{j=1}^{n} \alpha_j^{(k)} + \tau_i \sum_{j=n+1}^{p_i} \alpha_j^{(i)} + \tau_i \sum_{j=1}^{n_k} \gamma_j^{(i)} + \tau_i \sum_{j=n_k+1}^{m_k} \beta_j^{(i)} - \tau_i \sum_{j=1}^{q_i} \delta_j^{(i)} \]

\[-\tau_i \sum_{j=m_k+1}^{m_k} \delta_j^{(i)} \leq 0 \] \hspace{1cm} \text{(1.8)}

The real numbers \(\tau_i \) are positives for \(i = 1 \) to \(R \), \(\tau_i^{(i)} \) are positives for \(i^{(k)} = 1 \) to \(R^{(k)} \)

The contour \(L_k \) is in the \(s_k-p \) lane and run from \(\sigma - i \infty \) to \(\sigma + i \infty \) where \(\sigma \) is a real number with loop, if necessary, ensure that the poles of \(\Gamma(c_j^{(k)} - d_j^{(k)} s_k) \) with \(j = 1 \) to \(n_k \) are separated from those of \(\Gamma(1 - a_j + \sum_{i=1}^{r} b_{ij} s_k) \) with \(j = 1 \) to \(n \) and \(\Gamma(1 - c_j^{(k)} + \gamma_j^{(k)} s_k) \) with \(j = 1 \) to \(n_k \) to the left of the contour \(L_k \). The condition for absolute convergence of multiple Mellin-Barnes type contour (1.9) can be obtained by
extension of the corresponding conditions for multivariable H-function given by as:

\[|\arg z_k| < \frac{1}{2} A_i^{(k)} \pi, \quad \text{where} \]

\[A_i^{(k)} = \sum_{j=1}^{n} \alpha_{ij}^{(k)} - \tau_i \sum_{j=n+1}^{p_i} \alpha_{ij}^{(k)} - \tau_i \sum_{j=1}^{q_i} \beta_{ij}^{(k)} + \sum_{j=1}^{n_k} \gamma_j \tau_{i(k)} \sum_{j=n_k+1}^{p_i(k)} \gamma_j^{(k)} \]

\[+ \sum_{j=1}^{m_k} \delta_j^{(k)} - \tau_{i(k)} \sum_{j=m_k+1}^{q_i(k)} \delta_j^{(k)} > 0, \quad \text{with} \quad k = 1 \ldots , r, \quad i = 1, \ldots , R, \quad i^{(k)} = 1, \ldots , R^{(k)} \quad (1.9) \]

The complex numbers \(z_i \) are not zero. Throughout this document, we assume the existence and absolute convergence conditions of the multivariable Aleph-function.

We may establish the asymptotic expansion in the following convenient form:

\[\mathcal{N}(z_1, \ldots , z_r) = 0(|z_1|^{\alpha_1} \ldots |z_r|^{\alpha_r}); \quad \max(|z_1| \ldots |z_r|) \to 0 \]

\[\mathcal{N}(z_1, \ldots , z_r) = 0(|z_1|^{\beta_1} \ldots |z_r|^{\beta_r}); \quad \min(|z_1| \ldots |z_r|) \to \infty \]

where, with \(k = 1, \ldots , r : \alpha_k = \min[\Re(\beta_j^{(k)}/\gamma_j^{(k)})], j = 1, \ldots , m_k \) and

\[\beta_k = \max[\Re((c_j^{(k)} - 1)/\gamma_j^{(k)})], j = 1, \ldots , n_k \]

We will use these following notations in this paper:

\[U = p_i, q_i, \tau_i; \quad R ; \quad V = m_1, n_1; \ldots ; m_r, n_r \quad (1.10) \]

\[W = p_i^{(1)}, q_i^{(1)}, \tau_i^{(1)}; \quad R^{(1)} ; \ldots ; p_i^{(r)}, q_i^{(r)}, \tau_i^{(r)}; \quad R^{(r)} \quad (1.11) \]

\[A = \{ (\alpha_j, \alpha_j^{(1)}, \ldots , \alpha_j^{(r)}) \}_{1,n} \{ \tau_i (\alpha_j, \alpha_j^{(1)}, \ldots , \alpha_j^{(r)})_{n+1,p_i} \} \quad (1.12) \]

\[B = \{ \tau_i (\beta_j, \beta_j^{(1)}, \ldots , \beta_j^{(r)})_{m+1,q_i} \} \quad (1.13) \]

\[C = \{ (c_j, \gamma_j^{(1)}, \ldots , \gamma_j^{(r)})_{1,n} \}, \tau_i (c_j, \gamma_j^{(1)}, \ldots , \gamma_j^{(r)})_{n+1,p_i}, \ldots , \tau_i (c_j, \gamma_j^{(1)}, \ldots , \gamma_j^{(r)})_{n+r-1,p_i} \} \quad (1.14) \]

\[D = \{ (d_j, \delta_j^{(1)}, \ldots , \delta_j^{(r)})_{1,m} \}, \tau_i (d_j, \delta_j^{(1)}, \ldots , \delta_j^{(r)})_{m+1,q_i}, \ldots , \tau_i (d_j, \delta_j^{(1)}, \ldots , \delta_j^{(r)})_{m+r-1,q_i} \} \quad (1.15) \]

The multivariable Aleph-function write:

\[\mathcal{N}(z_1, \ldots , z_r) = \mathcal{N}^{(0,n,V)}_{U;W}(z_1, \ldots , z_r; A; C; \ldots ; B; D) \quad (1.16) \]

The generalized polynomials of multivariables defined by Srivastava [7], is given in the following manner:

\[S^{(n_1, \ldots , n_u)}_{(\mathfrak{m}_1, \ldots , \mathfrak{m}_u)} [y_1, \ldots , y_u] = \sum_{K_1=0}^{[N_1/\mathfrak{m}_1]} \cdots \sum_{K_u=0}^{[N_u/\mathfrak{m}_u]} \frac{(-N_1)_{\mathfrak{m}_1}K_1}{K_1!} \cdots \frac{(-N_u)_{\mathfrak{m}_u}K_u}{K_u!} A[N_1, K_1; \ldots ; N_u, K_u] y_1^{K_1} \cdots y_u^{K_u} \quad (1.17) \]

Where \(\mathfrak{m}_1, \ldots , \mathfrak{m}_u \) are arbitrary positive integers and the coefficients \(A[N_1, K_1; \ldots ; N_u, K_u] \) are arbitrary constants, real or complex.

Srivastava and Garg [8] introduced and defined a general class of multivariable polynomials as follows

ISSN: 2231-5373 http://www.ijmttjournal.org Page 44
2. Formulas

We have the following integrals, see ([3], p.16(15), [2], p.480(3.891))

\[\begin{align*}
\text{a) } & \int_0^{\pi/2} (\cos y)^t (\cos xy)^{y} \, dy = \frac{\pi \Gamma(t+1)}{2^{t+1} \Gamma \left(1 + \frac{t+\alpha}{2}\right)} \quad \text{where } Re(t) > -1 \\
\text{b) } & \int_0^{\pi} \sin(2h+1)y(siny)^{y} \, dy = \frac{\sqrt{\pi} \Gamma \left(\frac{1-t}{2} + h\right) \Gamma \left(1 + \frac{t}{2}\right)}{\Gamma \left(h + \frac{t+3}{2}\right) \Gamma \left(\frac{1-t}{2}\right)} \quad \text{where } Re(t) > -1 \\
\text{c) } & \int_0^{\pi} e^{(2m+1)y \sin(2n+1)y} \, dy = \frac{i\pi}{2} \delta_{m,n} \quad \text{where } \delta_{m,n} = 1 \text{ if } m = n, 0 \text{ else}
\end{align*}\]

(2.3)

3. Main Integrals

In the document, we note:

\[a = \frac{(-N_1)\cdots K_1}{K_1!} \cdots \frac{(-N_u)\cdots K_u}{K_u!} \cdot A[N_1, K_1; \cdots; N_u, K_u]\]

\[b = (-E)_{F_1, L_1; \cdots; F_u, L_u} B(E; L_1, \cdots, L_u) \quad \text{if } U_{12} = p_i + 1, q_i + 2, \tau_i; R, U_{22} = p_i + 2, q_i + 2, \tau_i; R\]

Integral 1

\[\int_0^{\pi/2} \cos(u \theta) (\cos \theta)^t S_{E_1, \cdots, E_u} \left[x_1 (\cos \theta)^{l_1}, \cdots, x_u (\cos \theta)^{l_u}\right] S_{M_1, \cdots, M_u} \left[y_1 (\cos \theta)^{k_1}, \cdots, y_u (\cos \theta)^{k_u}\right] \, d\theta = \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_1=0}^{[N_1/M_1]} \cdots \sum_{K_u=0}^{[N_u/M_u]} \sum_{L_1=0}^{[U_{12}/2]} \cdots \sum_{L_u=0}^{[U_{22}/2]} \frac{(-\Omega)^{M,N} A_{G,g}}{B_{G,g}!} \left(\begin{array}{c}
\sum_{i=1}^{u} L_i l_i - \sum_{i=1}^{u} K_i k_i; h_1, \cdots, h_r \ni A : C \\
\sum_{i=1}^{u} L_i l_i - \sum_{i=1}^{u} K_i k_i; h_1, \cdots, h_r \ni B : D
\end{array}\right)\]

(3.1)

Provided

a) \(Re(\alpha) > 0, h_i > 0, i = 1, \cdots, r \ni h > 0 \)

b) \(Re[\ell + h \min_{1 \leq j \leq M} \frac{b_j}{B_j} + \sum_{i=1}^{r} h_i \min_{1 \leq j \leq M} \delta_{j}^{(i)}] > -1 \)

c) \(|argz| < \frac{1}{2} \pi \Omega \) Where \(\Omega = \sum_{j=1}^{M} \beta_j + \sum_{j=1}^{N} \alpha_j - c_i \sum_{j=M+1}^{P_i} \beta_j + \sum_{j=N+1}^{P_i} \alpha_j > 0 \)
d) \(|argz_k| < \frac{1}{2} A_i^{(k)} \pi\), where \(A_i^{(k)}\) is given in (1.9)

Integral 2

\[
\int_{0}^{\pi/2} \sin(2h+1)y(siny)^{t} \mathcal{N}(z(siny)^{2k}) S_{E}^{F_1, \cdots, F_v}[x_1(siny)^{2l_1}, \cdots, x_v(siny)^{2l_v}]
\]

\[
S_{N_1, \cdots, N_u}^{2k_1, \cdots, 2k_v} \{y_1(siny)^{2k_1}, \cdots, y_u(siny)^{2k_v}\} \mathcal{N}(z_1(siny)^{2h_1}, \cdots, z_u(siny)^{2h_v}) d\theta
\]

\[
= \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_1=0}^{[N_1/M_1]} \sum_{K_u=0}^{[N_u/M_u]} \sum_{L_1, \cdots, L_v=0}^{F_1, \cdots, F_v, L_v \in E} \frac{ab(-)^{g} \Omega_{P_1, Q_1, \cdots, P_v, Q_v}}{B_G g!} x^{\eta_{G,g} K_1} y^{\eta_{G,g} K_u} x_{1}^{L_1} \cdots x_{v}^{L_v}
\]

\[
= \left(\frac{z_1}{z_r} \right)^{-(t-2)/-k\eta_{G,g} - \sum_{i=1}^{u} K_i L_i} \cdots \left(\frac{z_r}{z_r} \right)^{-(h-t-1)/-k\eta_{G,g} - \sum_{i=1}^{v} K_i L_i}
\]

\[
(1-t)/2 - k\eta_{G,g} - \sum_{i=1}^{u} L_i L_i \cdots (h-1)/2 - k\eta_{G,g} - \sum_{i=1}^{v} L_i L_i, A : C
\]

\[
(-t+1)/2 - k\eta_{G,g} - \sum_{i=1}^{u} L_i L_i \cdots (-h+1)/2 - k\eta_{G,g} - \sum_{i=1}^{v} L_i L_i, B : D)
\]

Provided

a) \(Re(\alpha) > 0, h_i > 0, i = 1, \cdots, r; \ h > 0\)

b) \(Re(2k) \min_{1 \leq j \leq M} \frac{b_j}{B_j} + 2 \sum_{i=1}^{r} \min_{1 \leq j \leq m_i} \frac{d_j^{(i)}}{\delta_j^{(i)}} > -1\)

c) \(|argz| < \frac{1}{2} \pi\Omega\) where \(\Omega = \sum_{j=1}^{M} \beta_j + \sum_{j=1}^{N} \alpha_j - \sum_{j=M+1}^{Q_v} \beta_{ji} + \sum_{j=N+1}^{P} \alpha_{ji} > 0\)

d) \(|argz_k| < \frac{1}{2} A_i^{(k)} \pi\), where \(A_i^{(k)}\) is given in (1.9)

Proof of (3.1)

To establish the finite integral (3.1), express the generalized classes of polynomials \(S_{N_1, \cdots, N_u}^{M_1, \cdots, M_v}\) and \(S_{E}^{F_1, \cdots, F_v}\) occurring on the L.H.S in the series form given by (1.17) and (1.18) respectively, the Aleph-function in series form given by (1.3) and the multivariable Aleph-function involving there in terms of Mellin-Barnes contour integral by (1.5). We interchange the order of summation and integration (which is permissible under the conditions stated). Now evaluating the \(\theta\)-integral by using the formula (2.1), after simplifications and on reinterpreting the Mellin-Barnes contour integral, we get the desired result.

The proof of the integral (3.2) can be developed by proceeding on similar method with the help of (2.2).

4. Fourier series

First Fourier serie 1

\[
S_{E}^{F_1, \cdots, F_v}[x_1(cos\theta)^{l_1}, \cdots, x_v(cos\theta)^{l_v}] S_{N_1, \cdots, N_u}^{2k_1, \cdots, 2k_v} \{y_1(cos\theta)^{k_1}, \cdots, y_u(cos\theta)^{k_v}\}(cos\theta)^{h_1} \mathcal{N}(z(cos\theta)^{h_v})
\]

\[
\mathcal{N}(z_1(cos\theta)^{h_1}, \cdots, z_r(cos\theta)^{h_v})
\]
which holds true under the same conditions from (3.1)

Second Fourier series

\[
(\sin \theta)^k N(z_1(\sin \theta)^{2h_k}, \ldots, z_u(\sin \theta)^{2h_u})
\]

\[
S^{2N_1, \ldots, 2N_u}[y_1(\sin \theta)^{2k_1}, \ldots, y_u(\sin \theta)^{2k_u}] N(z_1(\sin \theta)^{2h_1}, \ldots, z_u(\sin \theta)^{2h_u})
\]

Proof of (4.1)
To establish (4.1), let

\[
f(\theta) = \cos(u\theta)(\cos \theta)^k \frac{N_{z_1(\cos \theta)}^{k_1}, \ldots, N_{z_u(\cos \theta)}^{k_u}}{S^{E_k, \ldots, E_u}[x_1(\cos \theta)^{h_1}, \ldots, x_u(\cos \theta)^{h_u}]}
\]
The equation (4.3) is valid since $f(\theta)$ is continuous and of bounded variation in the open interval $(0, \pi)$, multiplying both the sides of (4.3) by $\cos(n\theta)$ and integrate with respect to y from 0 to π and use the orthogonal property of cosinus function and the integral (2.1), with substitution we get

$$A_0 = \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_1=0}^{N_M} \cdots \sum_{K_u=0}^{N_u} \frac{F_l L_1 + \cdots + F_v L_v \leq E}{L_1, \ldots, L_v = 0} \frac{\pi (-)^g \Omega_{P, Q, c, r}^{M, N} (\eta G, g)}{2^{l+1} + \eta G, g B GG!} x^{\eta G, g} y_1^{L_1} \cdots y_v^{L_v} \pi 2^{-(t+1) + \eta G, g} y_1^{K_1} \cdots y_u^{K_u}$$

Putting the value of A_0 in (4.3), we get the formula (4.1). To establish (4.2), let

$$f(\theta) = (\sin(\theta))^t N(z(\sin(\theta))^{2k}) S_{E^1, \ldots, E^v}^{F_1, \ldots, F_v} [x_1(\sin(\theta))^{2l_1}, \ldots, x_v(\sin(\theta))^{2l_v}]$$

$$S_{N_1, \ldots, N_u}^{M_1, \ldots, M_u} [y_1(\sin(\theta))^{2k_1}, \ldots, y_u(\sin(\theta))^{2k_u}] N(z(\sin(\theta))^{2h_1}, \ldots, z_u(\sin(\theta))^{2h_u})$$

$$= \sum_0^\infty B_n e^{(2n+1)iy} 0 < y < \infty$$

The equation (4.5) is valid since $f(\theta)$ is continuous and of bounded variation in the open interval $(0, \pi)$, multiplying both the sides of (4.5) by $\sin((2k + 1)\theta)$ and integrate with respect to y from 0 to π and use the integral (2.3), with substitution, we get

$$B_n = \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{n=-\infty}^{\infty} \sum_{K_1=0}^{N_M} \cdots \sum_{K_u=0}^{N_u} \frac{F_l L_1 + \cdots + F_v L_v \leq E}{L_1, \ldots, L_v = 0} \frac{(-)^g \Omega_{P, Q, c, r}^{M, N} (\eta G, g)}{B GG!} x^{\eta G, g} y_1^{K_1} \cdots y_u^{K_u}$$

$$x_1^{L_1} \cdots x_v^{L_v} \frac{2}{i\sqrt{\pi}} N_{U_{22}; W}^{0, n+2; V} \begin{pmatrix} z_1 \\ \vdots \\ z_r \\ \cdots \\ \cdots \\ \cdots \\ (t/2 - \eta G, g - \sum_{i=1}^{u} K_i k_i - \sum_{i=1}^{u} L_i l_i; h_1, \cdots, h_r), A : C \\ \cdots \\ \cdots \\ (-t/2 - \eta G, g - \sum_{i=1}^{u} L_i l_i; h_1, \cdots, h_r), B : D \end{pmatrix} e^{(2n+1)i\theta}$$

(4.6)

5. Multivariable I-function

In these section, we get two formulas concerning Fourier series and multivariable I-function defined by Sharma et al [4]

Let $\tau_1 = \tau_{(1)} = \cdots = \tau_{(r)} = 1$

First Fourier serie

$$S_{E^1, \ldots, E^v}^{F_1, \ldots, F_v} [x_1(\cos(\theta))^l_1, \ldots, x_v(\cos(\theta))^l_v] S_{N_1, \ldots, N_u}^{M_1, \ldots, M_u} [y_1(\cos(\theta))^k_1, \ldots, y_u(\cos(\theta))^k_u] N(z(\cos(\theta))^h)$$

ISSN: 2231-5373 http://www.ijmttjournal.org
which holds true under the same conditions from (3.1)

Second Fourier serie

\[
(siny)^{r} \sum_{E} \mathcal{N}(z(x\sin\theta)^{2k}) F_{E}^{f_{1}, \ldots, f_{v}} \left[x_{1}(\sin\theta)^{2l_{1}}, \ldots, x_{v}(\sin\theta)^{2l_{v}} \right]
\]

\[
\sum_{E} \mathcal{N}(z_{1}, \ldots, z_{v}) F_{n_{1}, \ldots, n_{v}} \left[y_{1}(\sin\theta)^{2k_{1}}, \ldots, y_{v}(\sin\theta)^{2k_{v}} \right] I(z_{1}(\sin\theta)^{2h_{1}}, \ldots, z_{v}(\sin\theta)^{2h_{v}})
\]

which holds true under the same conditions from (3.2)

6. Multivariable H-function

If \(\tau_{\nu} = \tau_{\nu(1)} = \cdots = \tau_{\nu(r)} = 1 \) and \(\tau = \tau^{(1)} = \cdots = \tau^{(r)} = 1 \), then the multivariable Aleph-function degenerates to the multivariable H-function defined by Srivastava et al [9]. And we have the following results.
First Fourier serie

\[S_{E}^{F_1, \ldots, F_\nu} \left[x_1(\cos \theta)^{l_1}, \ldots, x_\nu(\cos \theta)^{l_\nu} \right] S_{N_1, \ldots, N_\nu}^{y_1, \ldots, y_\nu} \left[y_1(\cos \theta)^{k_1}, \ldots, y_\nu(\cos \theta)^{k_\nu} \right] \mathcal{N}(z(\cos \theta)^{h_\nu}) \]

\[H(z(\cos \theta)^{h_1}, \ldots, z_\nu(\cos \theta)^{h_\nu}) \]

\[= \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_1=0}^{\left[N_1/M_1 \right]} \sum_{L_1=0}^{\left[N_1/M_1 \right]} \ldots \sum_{K_\nu=0}^{\left[N_\nu/M_\nu \right]} \sum_{L_\nu=0}^{\left[N_\nu/M_\nu \right]} (-)^g \Omega_{P_i, Q_i, c_i, r_i}^{M, N}(\eta_{G,g}) \frac{x^{\eta_{G,g}}}{B_{G,g}!} \frac{x_{L_1, \ldots, L_\nu} y_{K_1, \ldots, K_\nu}}{2^{l_1 + \cdots + l_\nu} x_{L_1, \ldots, L_\nu} y_{K_1, \ldots, K_\nu}} \]

Second Fourier serie

\[(\sin \gamma)^{\nu} \mathcal{N}(z(\sin \theta)^{2k_\nu}) S_{E}^{F_1, \ldots, F_\nu} \left[x_1(\sin \theta)^{2l_1}, \ldots, x_\nu(\sin \theta)^{2l_\nu} \right] \]

\[S_{N_1, \ldots, N_\nu}^{y_1, \ldots, y_\nu} \left[y_1(\sin \theta)^{2k_1}, \ldots, y_\nu(\sin \theta)^{2k_\nu} \right] H(z(\sin \theta)^{2h_1}, \ldots, z_\nu(\sin \theta)^{2h_\nu}) \]

\[= \sum_{G=1}^{M} \sum_{g=-\infty}^{\infty} \sum_{K_1=0}^{\left[N_1/M_1 \right]} \sum_{L_1=0}^{\left[N_1/M_1 \right]} \ldots \sum_{K_\nu=0}^{\left[N_\nu/M_\nu \right]} \sum_{L_\nu=0}^{\left[N_\nu/M_\nu \right]} (-)^g \Omega_{P_i, Q_i, c_i, r_i}^{M, N}(\eta_{G,g}) \frac{x^{\eta_{G,g}} y_{K_1, \ldots, K_\nu}}{B_{G,g}!} 2^{l_1 + \cdots + l_\nu} \]

\[H_{p+1,q+2:W}^{0,n+1:V} \left[\begin{array}{c}
2^{-h_1} z_1 \\
\vdots \\
2^{-h_\nu} z_\nu
\end{array} \right] \cos \theta (6.1) \]

\[\left(-t \eta_{G,g} - \sum_{i=1}^{\nu} L_i l_i - \sum_{i=1}^{\nu} K_i k_i ; h_1, \ldots, h_\nu, A'' : C'' \right) + \]

\[\left(\begin{array}{c}
(-t \pm u - h \eta_{G,g} - \sum_{i=1}^{\nu} L_i l_i - \sum_{i=1}^{\nu} K_i k_i)/2 ; h_1/2, \ldots, h_\nu/2, B'' : D'' \n\end{array} \right) \]

which holds true under the same conditions from (3.1)
7. Aleph-function of two variables

In these section, we get the two formulas of Fourier series concerning the Aleph-function of two variables defined by K. Sharma [6].

First Fourier serie

\[
S_{E}^{F_1, \ldots, F_{s}} [x_1 (\cos \theta)^{l_1}, \ldots, x_v (\cos \theta)^{l_v}] S_{N_1, \ldots, N_{u}}^{\Omega_{1}, \ldots, \Omega_{u}} [y_1 (\cos \theta)^{k_1}, \ldots, y_u (\cos \theta)^{k_u}] (\cos \theta)^{l} \mathbb{N}(z(\cos \theta)^{h})
\]

which holds true under the same conditions from (3.2)

Second Fourier serie

\[
S_{E}^{F_1, \ldots, F_{s}} [x_1 (\sin \theta)^{2l_1}, \ldots, x_v (\sin \theta)^{2l_v}] S_{N_1, \ldots, N_{u}}^{\Omega_{1}, \ldots, \Omega_{u}} [y_1 (\sin \theta)^{2k_1}, \ldots, y_u (\sin \theta)^{2k_u}] \mathbb{N}(z_1 (\sin \theta)^{2h_1}, z_2 (\sin \theta)^{2h_2})
\]

which holds true under the same conditions from (3.1)
(1-t)/2 -k_\eta G, g - \sum_{i=1}^{v} L_i l_i - \sum_{i=1}^{u} K_i k_i; h_1, h_2), A_2 : C_2
\right) e^{2n+1}i\theta (7.2)

which holds true under the same conditions from (3.2)

8. I-function of two variables

In these section, we get two results of double series concerning the I-function of two variables defined by Sharma and Mishra [5]. Let \(\tau = \tau' = \tau'' = 1 \)

First Fourier serie

\[S_E^{F_1, \ldots, F_v} \left[x_1 (\cos \theta)^{l_1}, \ldots, x_v (\cos \theta)^{l_v} \right] S_{N_1, \ldots, N_v}^{M_1, \ldots, M_v} \left[y_1 (\cos \theta)^{k_1}, \ldots, y_v (\cos \theta)^{k_v} \right] N(z(\cos \theta)^h) \]

\[I(z_1 (\cos \theta)^{h_1}, z_2 (\cos \theta)^{h_2}) \]

\[= \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_1=0}^{[N_1/M_1]} \sum_{K_2=0}^{[N_2/M_2]} \sum_{L_1=0}^{[N_1/M_1]} \sum_{L_2=0}^{[N_2/M_2]} ab \frac{(-\eta G, g)}{B G!} \frac{x^{\eta G, g}}{2^{-1+\eta G, g}} x_{l_1} \ldots x_{l_2} y_{k_1} \ldots y_{k_2} \]

\[\begin{pmatrix} 2^{-h_1} & z_1 \\ \vdots \\ 2^{-h_2} & z_2 \end{pmatrix} \begin{pmatrix} (-t -bh_\eta G, g - \sum_{i=1}^{u} L_i l_i - \sum_{i=1}^{u} K_i k_i; h_1, h_2), A_2 : C_2 \\ \vdots \\ \frac{(-t \pm u - h_\eta G, g - \sum_{i=1}^{u} L_i l_i - \sum_{i=1}^{u} K_i k_i/2; h_1/2, h_2/2, B_2 : D_2} \end{pmatrix} \]

which holds true under the same conditions from (3.1)

Second Fourier serie

\[(\sin \theta)^k N(z(\sin \theta)^{2k}) S_E^{F_1, \ldots, F_v} \left[x_1 (\sin \theta)^{2l_1}, \ldots, x_v (\sin \theta)^{2l_v} \right] \]

\[S_{N_1, \ldots, N_v}^{M_1, \ldots, M_v} \left[y_1 (\sin \theta)^{2k_1}, \ldots, y_v (\sin \theta)^{2k_v} \right] N(z_1 (\sin \theta)^{2h_1}, z_2 (\sin \theta)^{2h_2}) \]

\[= \sum_{G=1}^{M} \sum_{g=0}^{\infty} \sum_{K_1=0}^{[N_1/M_1]} \sum_{K_2=0}^{[N_2/M_2]} \sum_{L_1=0}^{[N_1/M_1]} \sum_{L_2=0}^{[N_2/M_2]} \sum_{\eta G, g} \frac{(-\eta G, g)}{B G!} \frac{x^{\eta G, g} y_{k_1} \ldots y_{k_v} \sin \theta}{2^{1+i \eta G, g}} \]

\[\begin{pmatrix} 2^{-h_1} & z_1 \\ \vdots \\ 2^{-h_2} & z_2 \end{pmatrix} \begin{pmatrix} (-t -bh_\eta G, g - \sum_{i=1}^{u} L_i l_i - \sum_{i=1}^{u} K_i k_i; h_1, h_2), A_2 : C_2 \\ \vdots \\ \frac{(-t \pm u - h_\eta G, g - \sum_{i=1}^{u} L_i l_i - \sum_{i=1}^{u} K_i k_i/2; h_1/2, h_2/2, B_2 : D_2} \cos \theta \end{pmatrix} \]

\((8.1) \)
Due to the nature of the multivariable Aleph-function and the general classes of polynomials \(S_{N_1, \ldots, N_t}^{M_1, \ldots, M_t} \) and \(S_{E_1, \ldots, E_v}^{F_1, \ldots, F_v} \), we can get general product of Laguerre, Legendre, Jacobi and other polynomials, the special functions of one and several variables.

REFERENCES

Personal adress : 411 Avenue Joseph Raynaud
Le parc Fleuri , Bat B
83140 , Six-Fours les plages
Tel : 06-83-12-49-68
Department : VAR
Country : FRANCE