General Solution and Stability of a Quartic Functional Equation

A. Ponmanaselvan*1, J. Kappiyagi Edwin*2, S. Anishbal #3

1&3 PG and Research Department of Mathematics, Sacred Heart College (Autonomous), Tirupattur – 635 601, Vellore Dist., Tamil Nadu, India
2PG and Research Department of Mathematics Loyola College (Autonomous), Chennai – 600 034, Tamil Nadu, India

Abstract – In this paper, authors are investigate the general solutions of a new Quartic functional equation

\[f(x + y) + f(x - y) - f(x) - f(y) = \frac{3}{4} f(2\sqrt{xy}) + f(x) + f(y) \]

and the generalized Hyers-Ulam - Rassias stability of this equation.

Key words – Hyers – Ulam – Rassias stability, Quadratic function, Quartic function.

I. INTRODUCTION

The different types of functional equations like Additive, Quadratic are introduced by Cauchy and Darbellet. These functional equations and its stability were discussed vividly in many research papers in the middle years of 20th century. Later, Cubic, Quartic and mixed type functional equations were introduced and its stability and many other properties were investigated by many authors [12, 13, 14, 19, 21, 24, 25, 26, 27, 32].

The stability problem of functional equations originated from a question of Ulam [34] in 1940, concerning the stability of group homomorphisms. Let \((G, .)\)be a group and let \((G, \ast)\) be a metric group with the metric \(d(., .)\).

Given \(\varepsilon > 0\), does there exist a \(\delta > 0\), such that if a mapping \(h: G_1 \rightarrow G_2\) satisfies the inequality \(d(h(x), h(x) * h(y)) < \delta\) for all \(x, y \in G_1\), then there exists a homomorphism \(H: G_1 \rightarrow G_2\) with \(d(H(x), H(y)) < \varepsilon\) for all \(x, y \in G_1\). In the other words, under what condition does there exist a homomorphism near an approximate homomorphism? The concept of stability for functional equations arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. In 1941, D. H. Hyers [16] gave first affirmative answer to the question of Ulam for Banach spaces. Let \(f: E \rightarrow E\) be a mapping between Banach spaces such that

\[\|f(x + y) - f(x) - f(y)\| \leq \delta \]

for all \(x, y \in E\), and for some \(\delta > 0\). Then there exists a unique additive mapping \(A: E \rightarrow E\) such that

\[\|f(x) - A(x)\| \leq \delta \]

for all \(x \in E\). Moreover if \(f(tx)\) is continuous in \(t\) for each fixed \(x \in E\), then \(A\) is linear. Finally in 1978, Th. M. Rassias [30] proved the following theorem.

Theorem 1.1. Let \(f: E \rightarrow E\) be a mapping from a norm vector space \(E\) intoa Banach space \(E\) subject to the inequality

\[\|f(x + y) - f(x) - f(y)\| \leq \varepsilon (\|x\|^p + \|y\|^p) \] (1.1)

for all \(x, y \in E\), where \(\varepsilon\) and \(p\) are constants with \(\varepsilon > 0\) and \(p < 1\). Then there exists a unique additive mapping \(A: E \rightarrow E\) such that

\[\|f(x) - A(x)\| \leq \frac{2\varepsilon}{2 - 2p} \|x\|^p \] (1.2)

for all \(x \in E\). If \(p < 0\), then inequality (1.1) holds for all \(x, y \neq 0\), and (1.2) for \(x \neq 0\). Also, if the function \(t \rightarrow f(tx)\) form \(\mathbb{R} \rightarrow E\) is continuous for each fixed \(x \in E\), the \(A\) is Linear.
Also in 1978, Th. M. Rassias [30] provided a generalization of the Hyers theorem which allows the Cauchy difference to be unbounded.

A generalized version of the theorem of Hyers for approximately linear mappings was given by Th. M. Rassias [30]. Since then, the stability problems of various functional equations have been extensively investigated by a number of authors [2, 4, 5, 7, 8, 10 - 17, 20, 21 – 31, 33]. In particular, one of the important functional equations studied is the following functional equation [1, 2, 4, 13, 18, 25, 27]

\[f(x + y) + f(x - y) = 2f(x) + 2f(y) \]

(1.3)

The quadratic function \(f(x) = x^2 \) is a solution of this functional equation, and so one usually is said to be the above functional equation to be quadratic.

In 1991, Z. Gajda [8] answered the question for the case \(p > 1 \), which was raised by Rassias. This new concept is known as Hyers-Ulam-Rassias stability of functional equations [1, 4, 5, 7 - 10, 15 – 17, 28, 29, 31].

In [23], W.-G. Park and J. H. Bae, considered the following functional equation

\[f(2x + y) + f(2x - y) = 4(f(x + y) + f(x - y)) + 24f(x) - 6f(y) \]

(1.4)

In fact they proved that a function \(f \) between real vector spaces \(X \) and \(Y \) is an isometry if and only if the above functional equation satisfies

\[B : X \times X \rightarrow Y \]

such that \(f(x) = B(x, x, x, x) \) for all \(x \) [3, 5, 6, 19, 20, 22, 23, 28]. It is easy to show that the function \(f(x) = ax^4 \) satisfies the functional equation (1.3), which is called a quartic functional equation and every solution of the quartic functional equation is said to be a quartic function.

In this paper, we deal with the next functional equation,

\[f(x + y) + f(x - y) - f(x) - f(y) = \frac{3}{4} f(2\sqrt{xy}) + f(x) + f(y) \]

(1.5)

It easy to check that the function \(f(x) = ax^4 \) is a solution of the functional equation (1.5). That is, it satisfies solution means, it is Quartic functional equation. Now in the present paper we would like to investigate the general solutions of a new type Quartic functional equation and also we obtain the generalized Hyers – Ulam – Rassias stability of this equation (1.5).

II. GENERAL SOLUTIONS

In this section we establish the general solutions of the functional equation (1.5). Through this section, \(X \) and \(Y \) be the real vector spaces.

Lemma 2.1. If the function \(f : X \rightarrow Y \) satisfies the functional equation (1.5), for all \(x, y \in X \), then we have,

(i) \(f(0) = 0 \)

(ii) \(f(-y) = f(y) \)

(iii) \(y = 0 \) is a solution of (1.5)

(iv) \(f(2y) = 2^4 f(y) \).

Proof. Put \(x = 0 \) and \(y = 0 \) in (1.5), we obtain,

\[f(0 + 0) + f(0 - 0) - f(0) - f(0) = \frac{3}{4} f(0) + f(0) + f(0) \]

Which gives that,

\[\frac{3}{4} f(0) + 2f(0) = 0 \]
We deduce that, we obtain, \(f(0) = 0 \). This proves (i).
To prove (2), put \(x = 0 \) in (1.5) and using Lemma 2.1 (i), we have,
\[
 f(y) + f(-y) - f(0) - f(y) = \frac{3}{4} f(0) + f(0) + f(y)
\]
Which gives, \(f(y) = f(-y) \), this proves (ii).
Put \(y = 0 \) in (1.5) and using Lemma 2.1 (i), easily we arrive \(y = 0 \) is a solution of (1.5). This proves (iii).
To prove (iv), put \(x = y \) in (1.5) and using Lemma 2.1 (i), we get,
\[
f(2y) + f(0) - f(y) - f(y) = \frac{3}{4} f(2y) + f(y) + f(y)
\]
\[
f(2y) - f(y) = \frac{3}{4} f(2y) + 2f(2y)
\]
\[
f(2y) - \frac{3}{4} f(2y) = 4f(y)
\]
\[
f(2y) = 16 f(y) = 2^4 f(y).
\]
Which proves (iv). This completes the proof of the lemma.

Theorem 2.2. If the function \(f : X \to Y \) satisfies the functional equation (1.5), for all \(x, y \in X, \) and additive then we have
\[
f(x + y) + f(x - y) = 2 f(x).
\]
Proof. Given that, \(f \) is additive, then we obtain,
\[
f(x + y) + f(x - y) - f(x) - f(y) = \frac{3}{4} f(2\sqrt{xy}) + f(x) + f(y)
\]
\[
f(x) + f(y) + f(x) + f(-y) - f(x) - f(y) = \frac{3}{4} f(2\sqrt{xy}) + f(x) + f(y)
\]
\[
f(-y) - f(y) = \frac{3}{4} f(2\sqrt{xy})(2.1)
\]
If \(f \) is additive, we have, \(f(-x) = -f(x) \). (2.2)
Using (2.2) in (2.1), we get,
\[
\frac{3}{4} f(2\sqrt{xy}) = -2f(y)
\]
(2.3)
Using (2.3) in (1.5), we get,
\[
f(x + y) + f(x - y) - f(x) - f(y) = -2 f(y) + f(x) + f(y)(2.4)
\]
Hence we reduce (2.4), easily we obtain,
\[
f(x + y) + f(x - y) = 2 f(x).
\]
This completes the proof of the lemma.

Theorem 2.3. If the function \(f : X \to Y \) satisfies the functional equation (1.5), for all \(x, y \in X, \) and additive then \(f \) is quadratic. That is,
Proof. Given that, \(f \) is additive, then (1.5) implies that,
\[
f(x + y) + f(x - y) = \frac{3}{4} f(2 \sqrt{xy}) + f(x) + f(y)
\]
by using lemma 2.1 (ii), we get,
\[
\frac{3}{4} f(2 \sqrt{xy}) = 0 \quad (2.5)
\]
Using (2.5) in (1.5), we get,
\[
f(x + y) + f(x - y) - f(x) - f(y) = 0 + f(x) + f(y) \quad (2.6)
\]
Hence we reduce (2.6), easily we obtain,
\[
f(x + y) + f(x - y) = 2 f(x) + 2f(y).
\]
This proves \(f \) is quadratic. Which completes the proof.

Lemma 2.4. If a function \(f : X \rightarrow Y \) satisfies the functional equation (1.5), and if \(f \) is quadratic for all \(x, y \in X \), then we have,
\[
f(ny) = n^2 f(y)
\]
Proof. Given that \(f \) is quadratic, we have,
\[
f(x + y) + f(x - y) = 2 f(x) + 2f(y) \quad (2.7)
\]
To prove this lemma by induction method, put \(x = y \) in (2.7) and using Lemma 2.1 (i), we get,
\[
f(2y) + f(0) = 2f(y) + 2f(y)
\]
Which implies that,
\[
f(2y) = 4 f(y) = 2^2 f(y)
\]
Put \(x = 2y \) in (2.7), we get
\[
f(3y) + f(y) = 2 f(2y) + 2f(y)
\]
\[
= 2 (2^2 f(y)) + 2 f(y)
\]
\[
f(3y) = 9 f(y) = 3^2 f(y)
\]
Assume that this true for \(n - 1 \), to prove this is true for \(n \).
Put \(x = (n - 1)y \) in (2.7) and by using the induction hypothesis, we get,
\[
f(ny) + f((n - 2)y) = 2 f((n - 1)y) + 2f(y)
\]
\[
f(ny) + (n - 2)^2 f(y) = 2 (n - 1)^2 f(y) + 2 f(y)
\]
\[
f(ny) + n^2 f(y) - 4n f(y) + 4 f(y) = 2 n^2 f(y) - 4n f(y) + 2 f(y) + 2 f(y)
\]
\[
f(ny) = n^2 f(y)
\]
This proves the lemma.
Lemma 2.5. If the function $f : X \to Y$ satisfies the functional equation (1.5), and if f is additive for all $x, y \in X$, then we have,

$$f(nx) = nf(x)$$

Proof. To prove this lemma by using induction method, by Theorem 2.2, we have,

$$f(x + y) + f(x - y) = 2f(x) \quad (2.8)$$

Put $y = x$ in (2.8), using Lemma 2.1(i), we get,

$$f(x + x) + f(0) = 2f(x)$$

$$f(2x) = 2f(x)$$

Put $y = 2x$ in (2.8), using f is additive, we get,

$$f(x + 2x) + f(x - 2x) = 2f(x)$$

$$f(3x) = 3f(x)$$

Hence this completes the lemma.

Theorem 2.6. If an function $f : X \to Y$ satisfies the functional equation (1.5), then f is quadratic if and only if

$$f(2\sqrt{xy}) = 0 \quad \text{for all } x, y \in X,$$

that is,

$$f(x + y) + f(x - y) = 2f(x) + 2f(y) \quad \text{iff} \quad f(2\sqrt{xy}) = 0.$$

Proof. Suppose that, $f(2\sqrt{xy}) = 0$, to prove that f is quadratic.

Now let us take (1.5), we have,

$$f(x + y) + f(x - y) - f(x) - f(y) = \frac{3}{4} f(2\sqrt{xy}) + f(x) + f(y)$$

$$f(x + y) + f(x - y) - f(x) - f(y) = \frac{3}{4} (0) + f(x) + f(y)$$

$$f(x + y) + f(x - y) = f(x) + f(y)$$

$$f(x + y) + f(x - y) = 2f(x) + 2f(y).$$

Conversely, now we have to prove that, $f(2\sqrt{xy}) = 0$

Suppose that f is quadratic, we have,

$$f(x + y) + f(x - y) = 2f(x) + 2f(y).$$

Using f is quadratic in (1.5), we have,
From this easily we arrive, this completes the proof of the theorem.

Now from (1.5) we will compose \(f \) into the even part and the odd part of the function. That is, it is defined by,

\[
f_e(y) = \frac{f(y) + f(-y)}{2},
\]

\[
f_o(y) = \frac{f(y) - f(-y)}{2}.
\]

Clearly, \(f_e \) is even and \(f_o \) is odd, then we have, \(f = f_e + f_o \).

III. Stability

Throughout this section, \(X \) and \(Y \) will be a real normed space and a real Banach space, respectively. Also in this section we investigate the generalized Hyers – Ulam – Rassias stability of the given Quartic functional equation (1.5). Let \(f : X \rightarrow Y \) be a function then we define \(D_f : X \times X \rightarrow Y \) by

\[
D_f(x, y) = 4(f(x + y) + f(x - y)) - 8(f(x) + f(y)) - 3(f(2\sqrt{xy}))
\]

for all \(x, y \in X \).

Theorem 3.1. Let \(\varphi : X \times X \rightarrow [0, \infty) \) be a function satisfies

\[
\sum_{i=0}^{\infty} \varphi(2^i x, 0) < \infty
\]

for all \(x \in X \), and

\[
\lim_{n \to \infty} \frac{(2^n x, 0)}{2^n} = 0
\]

for all \(x, y \in X \). If \(f : X \rightarrow Y \) is an even function such that \(f(0) = 0 \), and that

\[
\|D_f(x, y)\| < \varphi(x, y)
\]

(3.1)

for all \(x, y \in X \), then there exists a unique quartic function \(Q : X \rightarrow Y \) satisfying (1.5) and

\[
\|f(x) - Q(x)\| \leq \frac{1}{8} \sum_{i=0}^{\infty} \varphi(2^i x, 0)
\]

(3.2)

for all \(x \in X \).

Proof. Putting \(x = 0 \) in (3.1), then we have,

\[
\|4f(2x) - 8f(x)\| \leq \varphi(x, 0)
\]

(3.3)

Then dividing by 8 on both sides in (3.3), to obtain,

\[
\left\| \frac{f(2x)}{2} - f(x) \right\| \leq \frac{1}{8} \varphi(x, 0)
\]

(3.4)
for all \(x \in X \). Replacing \(x \) by \(2x \) in (3.4), we get
\[
\left\| \frac{f(4x)}{2} - f(2x) \right\| \leq \frac{1}{8} \varphi(2x, 0) \tag{3.5}
\]

Combine (3.4) and (3.5) by use of the triangle inequality to get
\[
\left\| \frac{f(4x)}{2^2} - f(x) \right\| \leq \frac{1}{8} \left(\frac{\varphi(2x, 0)}{2} + \varphi(x, 0) \right) \tag{3.6}
\]

By induction on \(n \in N \), we can prove,
\[
\left\| \frac{f(2^n x)}{2^n} - f(x) \right\| \leq \frac{1}{8} \sum_{i=0}^{n-1} \frac{\varphi(2^i x, 0)}{2^i} \tag{3.7}
\]

Dividing (3.7) by \(2^m \) and replacing \(x \) by \(2^m x \) we get.
\[
\left\| \frac{f(2^{m+n} x)}{2^{m+n}} - f(2^m x) \right\| = \frac{1}{2^m} \left\| f(2^n 2^m x) - f(2^m x) \right\|
\]
\[
\leq \frac{1}{8 \times 2^m} \sum_{i=0}^{n-1} \frac{\varphi(2^i 2^m x, 0)}{2^i}
\]
\[
\leq \frac{1}{8} \sum_{i=0}^{\infty} \frac{\varphi(2^i 2^m x, 0)}{2^{m+i}}
\]

for all \(x \in X \). This shows that \(\left\{ \frac{f(2^n x)}{2^n} \right\} \) is a Cauchy sequence in \(Y \) by taking the limit \(m \to \infty \). Since \(Y \) is a Banach space, then the sequence \(\left\{ \frac{f(2^n x)}{2^n} \right\} \) converges. We define \(Q : X \to Y \) by
\[
Q(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n}
\]
for all \(x \in X \). Since \(f \) is even function, then \(Q \) is even. On the other hand we have
\[
\|D_Q(x, y)\| = \lim_{n \to \infty} \frac{1}{2^n} \|D (2^n x, 2^n y)\|
\]
\[
\leq \lim_{n \to \infty} \frac{\varphi(2^n x, 2^n y)}{2^n} = 0.
\]
for all \(x, y \in X \). Hence by our assumption, we conclude that \(Q \) is a quartic function. Now we have to show \(Q \) is unique.

Suppose that there exists another quartic function \(\tilde{Q} : X \to Y \) which satisfies (1.5) and (3.2). We have,
\[
Q(2^n x) = 2^n Q(x) \text{ and } \tilde{Q}(2^n x) = 2^n \tilde{Q}(x) \text{ for all } x \in X \text{. It follows that}
\]
\[
\|\tilde{Q}(x) - Q(x)\| = \frac{1}{2^n} \|\tilde{Q}(2^n x) - Q(2^n x)\|
\]
\[
\leq \left(\|\tilde{Q}(2^n x) - f(2^n x)\| + \|f(2^n x) - Q(2^n x)\| \right)
\]
\[
\leq \frac{1}{4} \sum_{i=0}^{\infty} \frac{\varphi(2^{n+i} x, 0)}{2^{n+i}}
\]
for all $x \in X$. By taking $n \to \infty$ in this inequality we have,
\[
\lim_{n \to \infty} \|Q(x) - Q(x)\| \to 0
\]
\[
Q(x) = Q(x).
\]

Theorem 3.2. Let $\varphi : X \times X \to [0, \infty)$ be a function satisfies
\[
\sum_{i=0}^{\infty} 2^i \varphi(2^{-i-1}x, 0) < \infty
\]
for all $x, y \in X$, and $\lim_{n \to \infty} 2^n \varphi(2^{-n}x, 2^{-n}y) = 0$ for all $x, y \in X$. Suppose that an even function $f : X \to Y$ satisfies $f(0) = 0$, and (3.1). Then the limit $Q(x) = \lim_{n \to \infty} 2^n f(2^{-n}x)$ exists for all $x \in X$ and $Q : X \to Y$ is a unique quartic function satisfies (1.5) and
\[
\|f(x) - Q(x)\| \leq \frac{1}{4} \sum_{i=0}^{\infty} 2^i \varphi(2^{-i-1}x, 0) \quad (3.8)
\]
for all $x, y \in X$.

Proof. Put $x = 0$ in (3.1), we get,
\[
\|8f(x) - 4f(2x)\| \leq \varphi(x, 0) \quad (3.9)
\]
Replacing x by $\frac{x}{2}$ in (3.9) and dividing by 4, we get,
\[
\left\|2f\left(\frac{x}{2}\right) - f(x)\right\| \leq \frac{1}{4} \varphi\left(\frac{x}{2}, 0\right)
\]
\[
\|2f(2^{-1}x) - f(x)\| \leq \frac{1}{4} \varphi(2^{-1}x, 0) \quad (3.10)
\]
for all $x \in X$, replacing x by $\frac{x}{2}$ in (3.10), we obtain,
\[
\|2f(2^{-1}x) - f(2^{-1}x)\| \leq \frac{1}{4} \varphi(2^{-2}x, 0)
\]
\[
\|2f(2^{-2}x) - f(2^{-1}x)\| \leq \frac{1}{4} \varphi(2^{-2}x, 0) \quad (3.11)
\]
Multiplying 2 on both sides of (3.11), we get,
\[
\|2^2f(2^{-2}x) - 2f(2^{-1}x)\| \leq \frac{1}{4}(2 \varphi(2^{-2}x, 0)) \quad (3.12)
\]
Combining (3.10) and (3.12) by use of triangle inequality to obtain,
\[
\|2^2f(2^{-2}x) - f(x)\| \leq \frac{1}{4}(2 \varphi(2^{-2}x, 0) + \varphi(2^{-2}x, 0)) \quad (3.13)
\]
By induction on $n \in N$, we have,
\[
\|2^n f(2^{-n}x) - f(x)\| \leq \frac{1}{4} \sum_{i=0}^{n-1} 2^i \varphi(2^{-i-1}x, 0) \quad (3.14)
\]
Multiplying (3.14) by 2^n and replacing x by $2^{-m}x$ to obtain,
\[\|2^{m+n} f(2^{-m-n} x) - 2^m f(2^{-m} x)\| = 2^m \|2^n f(2^{-m} 2^{-n} x) - f(2^{-m} x)\| \]
\[\leq 2^m \frac{1}{4} \sum_{i=0}^{n-1} 2^i \varphi(2^{-i-1} 2^{-m} x, 0) \]
\[\leq \frac{1}{4} \sum_{i=0}^{n-1} 2^{m+i} \varphi(2^{-i-1} 2^{-m} x, 0) \]

for all \(x, y \in X \). By taking the \(\lim m \to \infty \), it follows that \(\{2^n f(2^{-n} x)\} \) is a Cauchy sequence in \(Y \). Since \(Y \) is a Banach space, then the sequence \(\{2^n f(2^{-n} x)\} \) converges. Now we will define a function, \(Q : X \to Y \) by

\[Q(x) = \lim_{n \to \infty} 2^nf(2^{-n} x) \]

for all \(x \in X \). Then the rest of the proof is similar to the Theorem 3.1, that is,

Since \(f \) is even function, then \(Q \) is even. On the other hand we have

\[\|D_\varphi(x, y)\| = \lim_n 2^n \|D_f(2^{-n} x, 2^{-n} y)\| \]
\[\leq \lim_n 2^n \varphi(2^{-n} x, 2^{-n} y) = 0. \]

for all \(x, y \in X \). Hence by our assumption, we conclude that \(Q \) is a quartic function. Now we have to show \(Q \) is unique.

Suppose that there exists another quartic function \(\tilde{Q} : X \to Y \) which satisfies (1.5) and (3.8). We have, \(\tilde{Q}(2^{-n} x) = 2^n Q(x) \) and \(\tilde{Q}(2^{-n} x) = 2^n \tilde{Q}(x) \) for all \(x \in X \). It follows that

\[\|\tilde{Q}(x) - Q(x)\| = 2^n \|\tilde{Q}(2^{-n} x) - Q(2^{-n} x)\| \]
\[\leq (\|\tilde{Q}(2^{-n} x) - f(2^{-n} x)\| + \|f(2^{-n} x) - Q(2^{-n} x)\|) \]
\[\leq \frac{1}{2} \sum_{i=0}^{\infty} 2^{n+i} \varphi(2^{-i-1} x, 0) \]

for all \(x \in X \). By taking \(n \to \infty \) in this inequality we have,

\[\lim_{n \to \infty} \|\tilde{Q}(x) - Q(x)\| \to 0 \]
\[\tilde{Q}(x) = Q(x). \]

This completes the proof of the Theorem.

Theorem 3.3. Let \(\varphi : X \times X \to [0, \infty) \) be a function such that

\[\sum_{i=0}^{\infty} \frac{\varphi(2^i x, 0)}{2^i} < \infty \]

and

\[\lim_{n \to \infty} \frac{\varphi(2^n x, 2^n y)}{2^n} = 0 \quad (3.15) \]

for all \(x, y \in X \). If \(f : X \to Y \) in an odd function such that

\[\|D_f(x, y)\| < \varphi(x, y) \quad (3.16) \]

for all \(x, y \in X \), then there exists a unique additive function \(A : X \to Y \) satisfying (1.5) and...
\[\|f(x) - A(x)\| \leq \frac{1}{4} \sum_{i=0}^{\infty} \frac{\varphi(2^i x, 0)}{2^i} \]

(3.17)

for all \(x \in X \).

Proof. Setting \(x = 0 \) in (3.16) to get,

\[\|f(2x) - 2f(x)\| \leq \frac{1}{4} \varphi(x, 0) \]

(3.18)

Then dividing by 2 on both sides in (3.18), to obtain,

\[\left\| \frac{f(2x)}{2} - f(x) \right\| \leq \frac{1}{8} \varphi(x, 0) \]

(3.19)

for all \(x \in X \). Replacing \(x \) by \(2x \) in (3.19), we get

\[\left\| \frac{f(4x)}{2} - f(2x) \right\| \leq \frac{1}{8} \varphi(2x, 0) \]

(3.20)

Combine (3.19) and (3.20) by use of the triangle inequality to get

\[\left\| \frac{f(4x)}{2^2} - f(x) \right\| \leq \frac{1}{8} \left(\frac{\varphi(2x, 0)}{2} + \varphi(x, 0) \right) \]

(3.21)

Now we using iterative method and induction on \(n \in N \), we can prove our next relation.

\[\left\| \frac{f(2^n x)}{2^n} - f(x) \right\| \leq \frac{1}{8} \sum_{i=0}^{n-1} \frac{\varphi(2^i x, 0)}{2^i} \]

(3.22)

Dividing (3.22) by \(2^m \) and replacing \(x \) by \(2^m x \) we get,

\[\left\| \frac{f(2^{m+n} x)}{2^{m+n}} - f(2^m x) \right\| = \frac{1}{2^m} \left\| f(2^m 2^m x) - f(2^m x) \right\| \]

\[\leq \frac{1}{8} \times 2^m \sum_{i=0}^{n-1} \frac{\varphi(2^i x, 0)}{2^i} \]

\[\leq \frac{1}{8} \sum_{i=0}^{\infty} \frac{\varphi(2^i 2^m x, 0)}{2^{m+i}} \]

(3.23)

for all \(x \in X \). Taking \(\lim m \to \infty \) in (3.23), then the right hand side of the inequality tends to zero. Since \(Y \) is a Banach space, then

\[A(x) = \lim_{n \to \infty} \frac{f(2^n x)}{2^n} \]

exists for all \(x \in X \). Since \(f \) is an odd function, then \(A \) is odd. On the other hand by (3.15) we have,

\[\|D_x(x, y)\| = \lim_{n \to \infty} \frac{1}{2^n} \|D_{f}(2^n x, 2^n y)\| \]

\[\leq \lim_{n \to \infty} \frac{\varphi(2^n x, 2^n y)}{2^n} = 0. \]
for all \(x, y \in X \). Hence by our assumption, we conclude that \(A \) is an additive function. Now we have to show \(A \) is unique.

Suppose that there exists another quartic function \(\tilde{A} : X \to Y \) which satisfies (1.5) and (3. 17). We have, \(A(2^n x) = 2^n A(x) \) and \(\tilde{A}(2^n x) = 2^n \tilde{A}(x) \) for all \(x \in X \). It follows that

\[
\| \tilde{A}(x) - A(x) \| = \frac{1}{2^n} \| \tilde{A}(2^n x) - A(2^n x) \|
\]

\[
\leq (\| \tilde{A}(2^n x) - f(2^n x) \| + \| f(2^n x) - A(2^n x) \|)
\]

\[
\leq \frac{1}{4} \sum_{i=0}^{\infty} \frac{\varphi(2^{n+i} x, 0)}{2^{n+i}}
\]

for all \(x \in X \). By taking \(n \to \infty \) in this inequality we have,

\[
\lim_{n \to \infty} \| \tilde{A}(x) - A(x) \| \to 0
\]

\[
\tilde{A}(x) = A(x).
\]

This completes the proof.

Theorem 3.4. Let \(\varphi : X \times X \to [0, \infty) \) be a function satisfies

\[
\sum_{i=0}^{\infty} 2^i \varphi(2^{-i} x, 0) < \infty
\]

for all \(x, y \in X \), and \(\lim_{n \to \infty} 2^n \varphi(2^{-n} x, 2^{-n} y) = 0 \) for all \(x, y \in X \). Suppose that an odd function \(f : X \to Y \) satisfies \(f(0) = 0 \), and (3. 1). Then the limit \(A(x) = \lim_{n \to \infty} 2^n f(2^{-n} x) \) exists for all \(x \in X \) and \(A : X \to Y \) is a unique additive function satisfying (1. 5) and

\[
\| f(x) - A(x) \| \leq \frac{1}{4} \sum_{i=0}^{\infty} 2^i \varphi(2^{-i} x, 0)
\]

for all \(x, y \in X \).

Proof. The proof is similar to the proof of the Theorem 3. 3.

Theorem 3.5. Let \(\varphi : X \times X \to [0, \infty) \) be a function such that

\[
\sum_{i=0}^{\infty} \frac{\varphi(2^i x, 0)}{2^i} < \infty \quad \text{and} \quad \lim_{n \to \infty} \frac{\varphi(2^n x, 2^n y)}{2^n} = 0
\]

for all \(x \in X \). Suppose that a function \(f : X \to Y \) satisfies the inequality

\[
\| D_f(x, y) \| < \varphi(x, y)
\]

for all \(x, y \in X \), and \(f(0) = 0 \). Then there exists a unique quartic function \(Q : X \to Y \) and a unique additive function \(A : X \to Y \) satisfying (1. 5) and

\[
\| f(x) - Q(x) - A(x) \| \leq \frac{1}{8} \sum_{i=0}^{\infty} \left(\frac{\varphi(2^i x, 0) + \varphi(-2^i x, 0)}{2 	imes 2^i} + \frac{4\left(\varphi(2^i x, 0) - \varphi(-2^i x, 0) \right)}{2 	imes 2^i} \right)
\]

(3. 23) for all \(x, y \in X \).

Proof. We have
for all $x, y \in X$. Since $f_e(0) = 0$ and f_e is an even function, then by Theorem 3.1, there exists a unique quartic function $Q : X \to Y$ satisfying
\[\|f_e(x) - Q(x)\| \leq \frac{1}{8} \sum_{i=0}^{\infty} \frac{\varphi(2^i x, 0) + \varphi(-2^i x, 0)}{2 \times 2^i} \] (3.24)
for all $x, y \in X$. On the other hand f_o is odd function and we have,
\[\|D_f(x,y)\| < \frac{1}{2} (\varphi(x,y) - \varphi(-x,-y)) \]
for all $x, y \in X$. Since $f_o(0) = 0$ and f_o is an even function, then by Theorem 3.3, there exists a unique additive function $A : X \to Y$ satisfying.
\[\|f_o(x) - A(x)\| \leq \frac{1}{2} \sum_{i=0}^{\infty} \frac{\varphi(2^i x, 0) - \varphi(-2^i x, 0)}{2 \times 2^i} \] (3.25)
for all $x, y \in X$. Combining (3.24) and (3.25) we obtain (3.23). This concludes the proof of the Theorem.

By Theorem 3.5, we are going to investigate the Hyers–Ulam–Rassias stability problem for functional equation (1.5).

Corollary 3.6. Let $\theta \geq 0, p < 1$ suppose $f : X \to Y$ satisfies the inequality
\[\|D_f(x,y)\| \leq \theta (\|x\|^p + \|y\|^p) \]
for all $x, y \in X$. Since $f(0) = 0$. Then there exists a unique quartic function $Q : X \to Y$ and a unique additive function $A : X \to Y$ satisfying (1.5), and
\[\|f(x) - Q(x) - A(x)\| \leq \frac{\theta}{8} \|x\|^p \left(\frac{2}{2 - 2^p} + \frac{4}{1 - 2^{p-1}} \right) \]
for all $x, y \in X$.

By corollary 3.6, we solve the following Hyers–Ulam stability problem for the functional equation (1.5).

Corollary 3.7. Let ε be the positive real number, and let $f : X \to Y$ be a function satisfies
\[\|D_f(x,y)\| \leq \varepsilon \]
for all $x, y \in X$. Then there exists a unique quartic function $Q : X \to Y$ and a unique additive function $A : X \to Y$ satisfying (1.5), and we have,
\[\|f(x) - Q(x) - A(x)\| \leq \frac{\varepsilon}{4} \]
for all $x, y \in X$.

By applying Theorem 3.2 and 3.4, we have the following theorem.

This completes the proof of the theorem.

Theorem 3.8. Let $\varphi : X \times X \to [0, \infty)$ be a function such that
\[\sum_{i=0}^{\infty} 2^i \varphi(2^{-i} x, 0) < \infty \text{ and } \lim_{n} 2^n \varphi(2^n x, 2^n y) = 0 \]
for all $x, y \in X$. Suppose that a function $f : X \rightarrow Y$ satisfies the inequality

$$\|D_f(x,y)\| < \varphi(x,y)$$

for all $x, y \in X$, and $f(0) = 0$. Then there exists a unique quartic function $Q : X \rightarrow Y$ and a unique additive function $A : X \rightarrow Y$ satisfying (1.5) and

$$\|f(x) - Q(x) - A(x)\| \leq \sum_{i=0}^{\infty} \left(\frac{2^{2i}}{2^{i+1}} \right) \left(\varphi(2^{-i}x, 0) + \varphi(-2^{-i}x, 0) \right)$$

for all $x, y \in X$.

Corollary 3.9. Let $\theta \geq 0$, $P > 4$. Suppose that $f : X \rightarrow Y$ satisfies the inequality

$$\|D_f(x,y)\| \leq \theta (\|x\|^P + \|y\|^P)$$

for all $x, y \in X$. Since $f(0) = 0$, then there exists a unique quartic function $Q : X \rightarrow Y$ and a unique additive function $A : X \rightarrow Y$ satisfying (1.5), and

$$\|f(x) - Q(x) - A(x)\| \leq \frac{\theta}{4 \times 2^P} \|x\|^P \left(\frac{1}{1 - 2^{4-P}} + \frac{1}{1 - 2^{1-P}} \right)$$

for all $x, y \in X$.

IV. CONCLUSION

The authors are confident that the article will inspire many authors to read this and developed the Quartic functional equations through this article and read more about the Quartic functional equations. It will also help to apply the Quadratic, Cubic, Quartic and many functional equations to solve many stability.

ACKNOWLEDGEMENT

The Authors are take this opportunity in thanking the Editors and for his valuable guidelines and for useful comments, necessary instructions it fetches out the article in the nice form.

REFERENCES