Some Fixed Point Theorems for New Contraction Mappings in Dislocated Quasi Metric Spaces

N. Anu

M.phil., Mathematics, Seethalakshmi Achi College for Women-pallathur
Affiliated to Alagappa University - karaikudi, Sivaganga district, Tamilnadu, India.

Abstract
In this paper, I have proved some fixed point theorems for new contraction conditions in dislocated quasi metric spaces. The presented results in this paper extend some well-known theorems in literature.

Keywords - fixed point, dislocated quasi-metric spaces, dq-Cauchy, dq-converges, dq-limit,dq-continuous, contraction mapping ,generalized contraction condition

I. INTRODUCTION

Fixed point theory is the most development of nonlinear analysis. In 1922 Banach proved a fixed point theorems for contractive mappings in complete metric spaces. It is a well-known Banach fixed point theorem. It has many applications in various branches of mathematics such as Differential equation, integral equation etc.

Also many authors studied many contractions and proved some fixed point theorems. In 1968 Kannan proved a fixed point theorem for new types of contraction mapping called Kannan mappings in a complete metric spaces. In 1974 Lj.B.Ciric generalizes the Banach contraction principle in metric spaces.

Some important generalizations of metric spaces are Dislocated metric spaces, Quasic metric spaces, Dislocated Quasi metric spaces. The notation of dislocated metric space which the self distance for any point need not be equal to zero and generalized this Banach Contraction Principle in complete dislocated metric space. Dislocated metric spaces play an essential role in topology but also in logic programming and electronic engineering. The notation of dislocated quasi metric space was introduced by F.M.Zeyada, G.H.Hassan and M.A.Ahmad in 2006. It is a generalization of the result due to Hitzler and Seda in dislocated metric spaces. In 2008 Aage and Salunke[4,5] established some fixed point theorems in dislocated quasimetric spaces, In 2010 A.Isufati [1] proved some fixed point results for continuous contractive condition with rational type expression of a dislocated quasi metric space. In 2013, Patel and Mitesh Patel, porru [6,7] derived some new fixed point results in a dislocated quasi metric space. In 2013 panthi and jha [5] established a result in dislocated quasi metric spaces, In 2014 muhammad sarwar, mujeeburrahman goharali [10,11] gave some fixed point result in dq metric spaces. In 2014 A.K.dubey, Reenashukla, and R.P.dubey [2] proved some fixed point result in dislocated quasi metric spaces.

The purpose of this paper to establish a fixed point theorem for new contraction conditions in dislocated quasi metric spaces.

II. PRELIMINARIES

In this section contains some basic definitions, and preliminary fixed point theorems in dislocated quasi metric spaces.

Definition 2.1 A point x in a set X is called a fixed point of a mapping T : X → X, if Tx = x.

Definition 2.2 Let X be a nonempty set and let d : X ×X → [0, ∞) be a function, called a distance function, satisfies the following conditions:

1. d(x, x) = 0,
2. d(x, y) = d(y, x) = 0, then x = y,
3. d(x, y) = d(y, x),
4. d(x, y) ≤ d(x, z) + d(z, y),
5. d(x, y) ≤ max {d(x, z), d(z, y)},

for all x, y, z ∈ X.

If d satisfies conditions (1) to (4) then it is called a metric on X.

If it satisfies conditions (1), (2) and (4), then it is called a quasi-metric (or simply q - metric) on X.

If it satisfies conditions (2),(3) and (4) then it is called a dislocated metric (or simply d - metric) on X.

If it satisfies conditions (2) and (4) then it is called a dislocated quasi-metric (or simply dq - metric) on X.

If a metric d satisfies the strong triangle inequality (5), then it is called an ultrametric on X.
Clearly every metric space is a dislocated metric space but the converse is not true.

Also every metric space is dislocated quasi-metric space but the converse is not true and every dislocated metric space is dislocated quasi-metric space but the converse is not true.

Definition 2.3 A sequence \(\{x_n\} \) in dq-metric space \((X, d)\) is said to be a cauchy sequence if for given \(\varepsilon > 0 \), there exists \(n_0 \in \mathbb{N} \) such that for all \(m, n \geq n_0 \),
\[
 d(x_m, x_n) < \varepsilon \\
\]
or
\[
 d(x_m, x_n) < \varepsilon , \text{ i.e } \min\{ d(x_m, x_n), d(x_n, x_m)\} < \varepsilon .
\]

Definition 2.4 A sequence \(\{x_n\} \) in dq-metric space \((X, d)\) is said to be a bi-cauchy sequence if for given \(\varepsilon > 0 \), there exists \(n_0 \in \mathbb{N} \) such that for all \(m, n \geq n_0 \),
\[
 \max\{ d(x_m, x_n), d(x_n, x_m)\} < \varepsilon .
\]

Note that every bi-cauchy sequence is a cauchy sequence.

Definition 2.5 A sequence \(\{x_n\} \) in dq-metric space \((X, d)\) is said to be a dq-convergent to \(x \). In this case \(x \) is called a dq-limit of \(\{x_n\} \), we write \(\lim_{n \to \infty} x_n = x \).

Definition 2.6 A dq-metric space \((X, d)\) is said to be complete if every cauchy sequence in \(X \) convergent to a point of \(X \).

Definition 2.7 Let \((X, d_1)\) and \((Y, d_2)\) be dq-metric spaces and let \(T : X \to Y \) be a function. Then \(T \) is continuous if for every sequence \(\{x_n\} \) which is \(d_1 \)-convergent to \(x_0 \) in \(X \), the sequence \(T(x_n) \) is in \(Y \) -convergent to \(T(x_0) \) in \(Y \).

Definition 2.8 Let \((X, d)\) be a dq-metric space. A mapping \(T : X \to X \) is called contraction, if there exists \(0 \leq \lambda < 1 \),
\[
 d(Tx, Ty) \leq \lambda (d(x, y)) \text{ for all } x, y \in X.
\]
where \(\lambda \) is called a contracting constant.

Definition 2.9 Let \((X, d)\) be a dq-metric space, and let \(T : X \to X \) be a self-mapping, Then \(T \) is called Kannan mapping. If \(d(Tx, Ty) \leq \alpha d(x, Tx) + d(y, Ty) \) for all \(x, y \in X \) and \(0 \leq \alpha < 1/2 \).

Definition 2.10 Let \((X, d)\) be a dq-metric space, a self mapping \(T : X \to X \) is called generalized contraction if and only if for all \(x, y \in X \), there exist non-negative numbers \(\alpha, \beta, \gamma \) and \(\delta \) such that
\[
 \sup\{ \alpha + \beta + \gamma + 2\delta \} < 1 \text{ and } d(Tx, Ty) \leq \alpha d(x, y) + \beta d(x, Tx) + \gamma d(y, Ty) + \delta \left(d(x, Tx) + d(y, Ty) \right)
\]

Proposition 2.11 Every convergent sequence in a dq-metric space is bi-cauchy.

Lemma 2.12 Every subsequence of dq-convergent sequence to a point \(x_0 \) is dq-convergent to \(x_0 \).

Lemma 2.13 dq-limits in a dq-metric space are unique.

Lemma 2.14 Let \((X, d)\) be a dq-metric space. If \(T : X \to X \) is a contraction mapping, then \(T \) is continuous on \(X \).

Proof: Since \(T \) is a contraction mapping
\[
 d(Tx, Ty) < (d(x, y)) \text{ for all } x, y \in X.
\]
Let \(\varepsilon > 0 \) be given. Choose \(\delta = \varepsilon \).
Then \(d(x, y) < \delta \), \(d(Tx, Ty) < \varepsilon \).
Therefore \(T \) is continuous on \(X \).

Lemma 2.15 Let \((X, d)\) be a dq-metric space. If \(T : X \to X \) is a contraction function, then \((T^n(x_0))\) is a cauchy sequence for each \(x_0 \in X \).

Theorem 2.16 Let \((X, d)\) be a complete dq-metric space and let \(T : X \to X \) be a continuous contraction function. Then \(T \) has a unique fixed point.

Theorem 2.17 Let \((X, d)\) be a complete dq-metric space and suppose there exist non negative constants \(\alpha, \beta, \gamma, \delta, \mu \) with \(\alpha + \beta + \gamma + 2(\delta + \mu) < 1 \). Let \(T : X \to X \) be a continuous mapping satisfying the following condition
\[
 d(Tx, Ty) \leq \alpha d(x, y) + \beta d(x, Tx) + \gamma d(y, Ty) + \delta \left(d(x, Tx) + d(y, Ty) \right)
\]
for all \(x, y \in X \). Then \(T \) has a unique fixed point.

Theorem 2.18 Let \((X, d)\) be a complete dq-metric space and let \(T : X \to X \) be a continuous mapping satisfying the follows condition
\[
 d(Tx, Ty) \leq \alpha d(x, y) + \beta \frac{d(x, Tx)d(y, Ty)}{d(x, y)} + \gamma [d(x, Tx) + d(y, Ty)] + \delta [d(x, Ty) + d(y, Tx)]
\]
for all $x, y \in X$, $\alpha, \beta, \gamma, \delta, \eta, \kappa \geq 0$,
$0 \leq \alpha + \beta + 2\gamma + 4\delta + 2\eta + 2\kappa < 1$, then T has unique fixed point.

Theorem 2.18 Let (X, d) be a complete dq-metric space and let $T : X \to X$ be a continuous mapping satisfying the follows condition
$$d(Tx, Ty) \leq \alpha d(x, y) + \beta d(x, Tx) + \gamma d(y, Ty) + \delta d(x, Ty) + \eta d(y, Tx) + \kappa d(y, Tx) + \mu d(y, Ty)$$
for all $x, y \in X$, $\alpha, \beta, \gamma, \delta, \eta, \kappa, \mu \geq 0$,
$0 \leq \alpha + \beta + 2\gamma + 4\delta + 2\eta + 2\kappa + 2\mu < 1$, then T has unique fixed point.

Theorem 2.19 Let (X, d) be a complete dq-metric space and let $T : X \to X$ be a continuous mapping satisfying the follows condition
$$d(Tx, Ty) \leq \alpha d(x, y) + \beta d(x, Tx) + \gamma d(y, Ty) + \delta d(x, Ty) + \eta d(y, Tx) + \kappa d(y, Tx) + \mu d(y, Ty)$$
for all $x, y \in X$, $\alpha, \beta, \gamma, \delta, \eta, \kappa, \mu \geq 0$,
$0 \leq \alpha + \beta + 2\gamma + 4\delta + 2\eta + 2\kappa + 2\mu < 1$, then T has unique fixed point.

III. MAIN FIXED POINT THEOREMS

Theorem 3.1 Let (X, d) be a complete dq-metric space and let $T : X \to X$ be a continuous mapping satisfying the follows condition
$$d(Tx, Ty) \leq \alpha d(x, y) + \beta d(x, Tx) + \gamma d(y, Ty) + \delta d(x, Ty) + \eta d(y, Tx) + \kappa d(y, Tx) + \mu d(y, Ty)$$
for all $x, y \in X$, $\alpha, \beta, \gamma, \delta, \eta, \kappa, \mu \geq 0$,
$0 \leq \alpha + \beta + 2\gamma + 4\delta + 2\eta + 2\kappa + 2\mu < 1$, then T has unique fixed point.

Proof: Let $\{x_n\}$ be a sequence in X, defined as follows
Let $x_0 \in X$, $T(x_0) = y_1$, $T(y_1) = y_2$, \ldots, $T(x_n) = x_{n+1}$, for all $n \in \mathbb{N}$

Replace $x = x_{n-1}$ and $y = x_n$ in the given condition
$$d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n) \leq \alpha d(x_{n-1}, x_n) + \beta d(x_{n-1}, x_n) + \gamma d(x_n, x_{n+1}) + \delta d(x_n, x_{n+1}) + \eta d(x_n, x_{n+1}) + \kappa d(x_n, x_{n+1}) + \mu d(x_n, x_{n+1})$$
Similarly, we have $d(x_{n-1}, x_{n-1}) \leq \lambda d(x_{n-2}, x_{n-1})$, $d(x_{n-1}, x_{n-1}) \leq \lambda^2 d(x_{n-2}, x_{n-1})$. In this way, we get $d(x_n, x_{n+1}) \leq \lambda^2 d(x_0, x_1)$.
Since $0 \leq \lambda < 1$, as $n \to \infty$, $\lambda^n \to 0$, we have $d(x_n, x_{n+1}) \to 0$.

Similarly we show that, $d(x_{n+1}, x_n) \to 0$.
Hence $\{x_n\}$ is a Cauchy sequence in the complete dislocated quasi-metric space X.

So there is a point $x \in X$ such that $x_n \to x$.

Since T is continuous we have
$$T(x) = \lim_{n \to \infty} T(x_n) = \lim_{n \to \infty} x_{n+1} = x.$$ Thus $T(x) = x$. Thus T has a fixed point.

Uniqueness:
Let x be a fixed point of T, then by the given condition
$$d(x, x) = d(Tx, Tx) \leq \alpha d(x, x) + \beta d(x, x) + \gamma d(x, x) + \delta d(x, x) + \eta d(x, x) + \kappa d(x, x) + \mu d(x, x)$$
Replace $x = x_{n-1}$ and $y = x_n$ in the given condition
$$d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n) \leq \alpha d(x_{n-1}, x_n) + \beta d(x_{n-1}, x_n) + \gamma d(x_n, x_{n+1}) + \delta d(x_n, x_{n+1}) + \eta d(x_n, x_{n+1}) + \kappa d(x_n, x_{n+1}) + \mu d(x_n, x_{n+1})$$
\[
d(x, x) \leq (\alpha + \beta + \gamma + 2\delta + 2\mu + 2\eta + 2\zeta) d(x, x)
\]
which is true only if \(d(x, x) = 0\), since \(0 \leq \alpha + \beta + \gamma + 2(\delta + \mu) < 1\) and \(d(x, x) \geq 0\). Thus \(d(x, x) = 0\) if \(x\) is a fixed point of \(T\).

Now, let \(x, y \in X\) be fixed points of \(T\).

That is, \(Tx = x, Ty = y\).

Then by the given condition, we have
\[
d(x, y) = d(Tx, Ty) \leq \alpha d(x, y) + \beta d(Tx, Ty) + \gamma d(y, y) + \delta d(x, x) + \mu d(x, y) + \eta d(y, y) + \kappa d(x, y) + \zeta d(x, x)
\]
\[\text{i.e. } d(x, y) \leq (\alpha + 2\mu + \eta + \kappa + 2\zeta) d(x, x)
\]
Similarly, \(d(y, x) \leq (\alpha + 2\mu + \eta + \kappa + 2\zeta) d(x, x)\)

Hence
\[
d(x, y) - d(y, x) \leq (\alpha + 2\mu + \eta + \kappa + 2\zeta) |d(x, y) - d(y, x)|
\]
Which gives \(d(x, y) = d(y, x)\).

Since \(0 \leq (\alpha + 2\mu + \eta + \kappa + 2\zeta) < 1\).

Again from the given condition
\[
d(x, y) \leq (\alpha + 2\mu + \eta + \kappa + 2\zeta) d(x, y)
\]
which gives \(d(x, y) = 0\), since \(d(x, y) \geq 0\), \(0 \leq (\alpha + 2\mu + \eta + \kappa + 2\zeta) < 1\).

Further \(d(x, y) = d(y, x) = 0\), hence \(x = y\).

Hence fixed point of \(T\) is unique.

Corollary 3.2 Let \((X, d)\) be a complete dq-metric space and let \(T : X \to X\) be a continuous mapping satisfying the follows condition
\[
d(Tx, Ty) \leq \alpha d(x, y) + \beta d(Tx, Ty) + \gamma d(y, y) + \delta d(x, x) + \mu d(x, y) + \eta d(y, y) + \kappa d(x, y) + \zeta d(x, x)
\]
for all \(x, y \in X\), \(\alpha, \beta, \gamma, \delta, \mu, \eta, \kappa, \zeta \geq 0\), \(0 \leq \alpha + \beta + \gamma + 2\delta + 2\mu < 1\), then \(T\) has a unique fixed point.

Proof: put \(\delta = \mu = \eta = \kappa = \xi = 0\) in the above theorem 3.1, it can be easily proved.

Corollary 3.3 Let \((X, d)\) be a complete dq-metric space and let \(T : X \to X\) be a continuous mapping satisfying the follows condition
\[
d(Tx, Ty) \leq \alpha d(x, y) + \beta d(Tx, Ty) + \gamma d(y, y) + \delta d(x, x) + \mu d(x, y) + \eta d(y, y) + \kappa d(x, y) + \zeta d(x, x)
\]
for all \(x, y \in X\), \(\alpha, \beta, \gamma, \delta, \mu, \eta, \kappa, \zeta \geq 0\), \(0 \leq \alpha + \beta + \gamma + 2\delta + 2\mu < 1\), then \(T\) has a unique fixed point.

Proof: put \(\delta = \mu = \eta = \kappa = \xi = 0\) in the above theorem 3.1, it can be easily proved.

Theorem 3.5 Let \((X, d)\) be a complete dq-metric space and let \(T : X \to X\) be a continuous mapping satisfying the condition
\[
d(Tx, Ty) \leq \alpha d(x, y) + \beta d(x, Tx) + \gamma d(y, Ty) + \delta d(x, x) + \mu d(y, y) + \eta d(x, y) + \kappa d(y, y) + \zeta d(x, x)
\]
for all \(x, y \in X\), \(\alpha, \beta, \gamma, \delta, \mu, \eta, \kappa, \zeta \geq 0\), \(0 \leq \alpha + \beta + \gamma + 2\delta + 2\mu < 1\), then \(T\) has a unique fixed point.

Proof: put \(\delta = \mu = \eta = \kappa = \xi = 0\) in the above theorem 3.1, it can be easily proved.
1. Let \(x, y \) be fixed point, (i.e.) \(Tx = x, Ty = y \), then by the given condition, we have,

\[
\begin{align*}
\text{d}(x, y) &= \text{d}(Tx, Ty) \\
&\leq \alpha \text{d}(x, x) + \beta \frac{\text{d}(x, y) + \text{d}(x, y)}{1 + \text{d}(x, y)} \\
&\quad + \mu \left[\text{d}(x, y) + \text{d}(y, y) \right] \\
&= \alpha \text{d}(x, x) + \beta \frac{\text{d}(x, y) + \text{d}(x, y)}{1 + \text{d}(x, y)} \\
&\quad + \mu \left[\text{d}(x, y) + \text{d}(y, y) \right]
\end{align*}
\]

which is true only if \(\gamma = \delta = \mu = 0 \) in the above theorem 3.5, it can be easily proved.

Corollary 3.6 Let \(X, d \) be a complete dq- metric space and let \(T : X \to X \) be a continuous mapping satisfying the condition

\[
\text{d}(Tx, Ty) \leq \alpha \text{d}(x, y) + \beta \frac{\text{d}(x, y) + \text{d}(x, y)}{1 + \text{d}(x, y)} + \mu \left[\text{d}(x, y) + \text{d}(y, y) \right]
\]

for all \(x, y \in X, \alpha, \beta > 0 \) and \(\alpha + \beta + 2\mu < 1 \). Then \(T \) has a unique fixed point.

Proof: put \(\gamma = \delta = \mu = 0 \) in the above theorem 3.5, it can be easily proved.

Corollary 3.7 Let \(X, d \) be a complete dq- metric space and let \(T : X \to X \) be a continuous mapping satisfying the condition

\[
\text{d}(Tx, Ty) \leq \alpha \text{d}(x, y) + \beta \frac{\text{d}(x, y) + \text{d}(x, y)}{1 + \text{d}(x, y)} + \mu \left[\text{d}(x, y) + \text{d}(y, y) \right]
\]

for all \(x, y \in X, \alpha, \beta > 0 \) and \(\alpha + \beta + 2\mu < 1 \). Then \(T \) has a unique fixed point.

Proof: put \(\beta = \gamma = \delta = 0 \) in the above theorem 3.5, it can be easily proved.

Theorem 3.8 Let \((X, d) \) be a complete dq-metric space and let \(T : X \to X \) be a continuous mapping satisfying the following condition

\[
\text{d}(Tx, Ty) \leq \alpha \text{d}(x, x) + \beta \left(\frac{\text{d}(x, x) + \text{d}(y, y)}{1 + \text{d}(x, y)} \right)
\]

for all \(x, y \in X, \alpha, \beta > 0 \) and \(\alpha + \beta < 1 \). Then \(T \) has a unique fixed point.

Proof: Let \(\{ x_n \} \) be a sequence in \(X \), defined as follows

Let \(x_0 \in X, T(x_0) = x_1, T(x_1) = x_2, \ldots \ldots \)

\(T(x_n) = x_{n+1} \) for all \(n \in \mathbb{N} \)

Replace \(x = x_{n-1} \) and \(y = x_n \) in the given condition

\[
\text{d}(x_n, x_{n+1}) = \text{d}(T(x_{n-1}), T(x_n))
\]
Hence fixed point of \(T \) is unique.

IV. CONCLUSIONS

In this paper, I have proposed a fixed point theorems for new contraction condition in dislocated quasi metric spaces the presented results generalizes some existing results.

ACKNOWLEDGMENTS

Thank God and Referees who supported me to bring this.

REFERENCES

