FIXED POINT THEOREM FOR WEAKLY INWARD NONSELF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN BANACH SPACES

Anil Rajput*, Abha Tenguria** and Sanchita Pandey***

*Department of mathematics CSA Govt. PG College, Nodal Sehore
**Department of mathematics Govt. M.L.B college, Bhopal
***Department of mathematics Technocrates institute of technology, Bhopal

Abstract

For a smooth banach space E, let us assume that K is a nonempty closed convex subset of with P as a sunny nonexpansive retraction. Let T_1, T_2, T_3 : K → E be three weakly inward nonself asymptotically nonexpansive mappings with respect to P with three sequences

\[k_n^{(1)} \in [1, \infty) \] satisfying \(\sum_{n=1}^{\infty} (k_n^{(i)} - 1) < \infty \), (i=1,2,3) and F(T_1) \cap F(T_2) \cap F(T_3) = \{x \in K : T_1x = T_2x = T_3x = x\}

respectively.

For any given x_1 \in K, suppose that \{x_n\} is a sequence generated iteratively by

\[x_{n+1} = a_n x_n + b_n (PT_1)^n y_n + c_n (PT_2)^n y_n + d_n (PT_3)^n y_n \]

\[y_n = a_n x_n + b_n (PT_1)^n y_n + c_n (PT_2)^n y_n + d_n (PT_3)^n y_n \]

where \(\{a_n\}, \{b_n\}, \{c_n\}, \{d_n\} \) for i=1,2,3 are sequences in \[a, 1 - a \] for some a \in (0,1), satisfying \(a_n + b_n + c_n + d_n = 1 \) (i=1,2,3). some a \in (0,1), Under some suitable conditions, the strong and weak convergence theorems of \{x_n\} to a common fixed point of T_1, T_2 and T_3 are obtained.

Mathematics Subject Classification: 47H09, 47J25

Keywords :
Nonself asymptotically nonexpansive mapping, Strong and weak convergence, Common fixed point.

1 INTRODUCTION

For a self-mapping T : K → K, nonexpansive mapping is defined as \[|| T x - T y || \leq || x - y || \] for all x, y \in K and asymptotically nonexpansive if there exists a sequence \{k_n\} \subset [1, \infty) with \(k_n \to 1 \) as \(n \to \infty \) such that for all n \in N , where N stands for set of natural number,
As a generalization of the class of nonexpansive maps, the class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [5] in 1972, who proved that if \(K \) is a nonempty bounded closed convex subset of a real uniformly convex Banach space and \(T \) is an asymptotically nonexpansive self-mapping of \(K \), then \(T \) has a fixed point. Recently, Chidume et al. [1] further generalized the concept of nonself asymptotically nonexpansive mapping defined as follows:

Definition 1.1. [2] Let \(K \) be a nonempty subset of real normed linear space \(E \). Let \(P : E \rightarrow K \) be the nonexpansive retraction of \(E \) onto \(K \). (1) A nonself mapping \(T : K \rightarrow E \) is called asymptotically nonexpansive if there exist sequences \(\{k_n\}_{n \geq 1} \) with \(k_n \rightarrow 1 \) as \(n \rightarrow \infty \) such that

\[
||T^n x - T^n y|| \leq k_n ||x - y|| \quad \text{for all } x, y \in K. \tag{1.1}
\]

(2) A nonself mapping \(T : K \rightarrow E \) is said to be uniformly \(L \)-Lipschitzian if there exists a constant \(L \geq 0 \) such that

\[
||T^n x - T^n y|| \leq L ||x - y|| \quad \text{for all } x, y \in K. \tag{1.2}
\]

By using the following iterative algorithm:

\[
x_{n+1} = P\left(\left(1-a_n\right)x_n + a_n T(P)^{n-1} x_n\right), \tag{1.5}
\]

\(\forall \ n \geq 1 \), some authors [2, 6, 7, 11] have studied the strong and weak convergence theorem for such mappings.

As a matter of fact, if \(T \) is a self-mapping, then \(P \) is a identity mapping. Thus (1.3) and (1.4) reduce to (1.1) and (1.2) as \(T \) is a self-mapping, respectively. In addition, if \(T : K \rightarrow E \) is asymptotically nonexpansive in light of (1.3) and \(P : E \rightarrow K \) is a nonexpansive retraction, then \(PT : K \rightarrow K \) is asymptotically nonexpansive in light of (1.1). Indeed, for all \(x, y \in K \) and \(n \geq 1 \), by (1.3), it follows that

\[
|| (PT)^n x - (PT)^n y|| = ||PT(PT)^{n-1} x PT(PT)^{n-1} y|| \leq || PT(PT)^{n-1} x - PT(PT)^{n-1} y|| \leq k_n ||x - y||. \tag{1.6}
\]

Conversely, it may not be true. Therefore, Zhou et al. [13] introduced the following generalized definition recently.

Definition 1.2. [9] Let \(K \) be a nonempty subset of real normed linear space \(E \). Let \(P : E \rightarrow K \) be a nonexpansive retraction of \(E \) onto \(K \).

(1) A nonself mapping \(T : K \rightarrow E \) is called asymptotically nonexpansive with respect to \(P \) if there exist sequences \(\{k_n\}_{n \geq 1} \) with \(k_n \rightarrow 1 \) as \(n \rightarrow \infty \) such that

\[
|| (PT)^n x - (PT)^n y|| \leq k_n ||x - y|| \quad \forall x, y \in K, \ n \geq 1. \tag{1.7}
\]

(2) A nonself mapping \(T : K \rightarrow E \) is said to be uniformly \(L \)-Lipschitzian with respect to \(P \) if there exists a constant \(L \geq 0 \) such that

\[
|| (PT)^n x - (PT)^n y|| \leq L ||x - y|| \quad \forall x, y \in K, \ n \geq 1. \tag{1.8}
\]

Furthermore, by studying the following iterative process:

\[
x_{n+1} = \alpha_n \beta_n + \beta_n (PT_1)^{n} x_n + \gamma_n (PT_2)^{n} x_n \quad \forall x_1 \in K, \ n \geq 1. \tag{1.9}
\]

where \(\{\alpha_n\}, \{\beta_n\} \), and \(\{\gamma_n\} \) are three sequences in \([0, 1-\alpha] \) for some \(\alpha \in (0, 1) \), satisfying \(\alpha_n + \beta_n + \gamma_n = 1 \). Zhou et al. [3] obtained some strong and weak convergence theorems for common fixed points of nonself asymptotically nonexpansive mappings with respect to \(P \) in uniformly convex Banach spaces. As a consequence, the main results of Chidume et al. [1] are deduced.

Inspired and motivated by those work mentioned above and three step iteration method proposed by Noor [8], in this paper, we construct a three step iteration scheme for approximating common fixed points of three nonself asymptotically nonexpansive mappings with respect to \(P \) and to prove some strong and weak convergence theorems for such mappings in uniformly convex Banach spaces.
2. PRELIMINARIES

Let K be a nonempty closed convex subset of a real uniformly convex Banach space E with retraction P. Let $T_1, T_2, T_3 : K \to E$ be three nonself asymptotically nonexpansive mappings with respect to P. For approximating common fixed points of such mappings, we further generalize the iteration scheme (1.9) as follows:

$$x_{n+1} = a_{n1}x_n + b_{n1}(PT_1)^n y_n + c_{n1} (PT_2)^n y_n + d_{n1} (PT_3)^n y_n$$

$$y_n = a_{n2}x_n + b_{n2}(PT_1)^n y_n + c_{n2} (PT_2)^n y_n + d_{n2} (PT_3)^n y_n$$

$$z_n = a_{n3}x_n + b_{n3}(PT_1)^n y_n + c_{n3} (PT_2)^n y_n + d_{n3} (PT_3)^n y_n$$

Where $\{a_{ni}\}, \{b_{ni}\}, \{c_{ni}\}, \{d_{ni}\}, i = \{1,2,3\}$ are sequences in $[0,1]$ satisfying

$$a_{ni} + b_{ni} + c_{ni} + d_{ni} \text{ for } \{1,2,3\}$$

Let E be a Banach space with dimension $E \geq 2$. The modulus of E is the function $\delta_E(\varepsilon) : (0,2) \to [0,1]$ defined by

$$\delta_E(\varepsilon) = \inf \left\{ 1 - \| \frac{1}{2}(x+y) \| ; \| x \|, \| y \| = 1, \varepsilon = \| x - y \| \right\}$$

A Banach space E is uniformly convex if and only if $\delta_E(\varepsilon) > 0$ for all $\varepsilon \in (0,2]$. Let E be a Banach space and $S(E) = \{ x \in E : x = 1 \}$. The space E is said to be smooth if

$$\lim_{t \to 0} \frac{\| x + ty \| - \| x \|}{t}$$

exists for all $x, y \in S(E)$.

A subset K of E is said to be retract if there exists continuous mapping $P : E \to K$ such that $Px = x$ for all $x \in K$. A mapping $P : E \to E$ is said to be a retraction if $P^2 = P$. Let C and K be subsets of a Banach space E. A mapping P from C into K is called sunny if $P(Px + t(x-Px)) = Px$ for $x \in C$ with $Px = z$ for every $z \in R(P)$ (the range of P). It is well-known that every closed convex subset of a uniformly convex Banach space is a retract. For any $x \in K$, the inward set $I_k(x)$ is defined as follows: $I_k(x) = \{ y \in E : y = x + \lambda (z-x), z \in K, \lambda \geq 0 \}$. A mapping $T : K \to E$ is said to satisfy the inward condition if $T_x \in I_k(x)$ for all $x \in K$. T is said to satisfy the weakly inward condition if, for each $x \in K, T_x \in \text{cl} I_k(x)$ (the closure of $I_k(x)$).

A Banach space E is said to satisfy Opial’s condition if, for any sequence $\{x_n\}$ in E, $x_n \to x$ implies that

$$\limsup_{n \to \infty} |x_n - x| < \limsup_{n \to \infty} |x - y|$$

for all $y \in E$ with $y \neq x$, where, $x_n \to x$ denotes that $\{x_n\}$ converges weakly to x.

Let K be a nonempty closed subset of a real Banach space E. $T : K \to E$ is said to be demicompact if, for any sequence $\{x_n\} \subset K$ with $\|x_n - Tx_n\| \to 0$ (as $n \to \infty$) there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $\{x_{n_k}\}$ converges strongly to $x^* \in K$.

A mapping T with domain $D(T)$ and range $R(T)$ in E is said to be semi-closed at p if whenever $\{x_n\}$ is a sequence in $D(T)$ such that $\{x_n\}$ converges weakly to $x^* \in D(T)$ and $\{Tx_n\}$ converges strongly to p, then $Tx^* = p$.

Lemma 2.1. [12] Let $\{a_n\}, \{\delta_n\}, \{b_n\}$ be sequences of nonnegative real numbers satisfying

$$a_n + 1 \leq (1 + \delta_n) a_n + b_n, \forall n \geq 1,$$

$$\sum_{n=1}^{\infty} \delta_n < \infty \text{ and } \sum_{n=1}^{\infty} b_n < \infty \text{ then } \lim a_n \text{ exists.}$$

Lemma 2.2. [6] Let E be a real uniformly convex Banach space and let $B_r(0)$ be the closed ball of E with center at the origin and radius $r > 0$. Then, there exists a continuous strictly increasing convex function $g : [0, \infty) \to [0, \infty)$ with $g(0) = 0$ such that

$$\| \lambda x + \mu y + \gamma z \| \leq \lambda \| x \|^2 + \mu \| y \|^2 + \gamma \| z \|^2 - \lambda \mu g(\| x - y \|)$$

For all $x,y,z \in B_r(0)$ and $\lambda, \mu, \gamma \in [0,1]$ with $\lambda + \mu + \gamma = 1$.

Lemma 2.3. [7] Let E be a real smooth Banach space, let K be a nonempty closed convex subset of E with P as a sunny nonexpansive retraction, and let $T : K \to E$ be a mapping satisfying weakly inward condition. Then $F(PT) = F(T)$.

Lemma 2.4. [3] Let E be a uniformly convex Banach space and K a nonempty closed convex subset of E. Let $T : K \to K$ be an asymptotically nonexpansive mapping with a sequence $\{k_n\}$.
Lemma 3.1. Let K be a nonempty closed convex subset of a real uniformly convex Banach space E. Let, $T_1, T_2, T_3 : K \to E$ be three nonself asymptotically non expansive mappings with respect to P with three sequences $\{k_{n}^{(1)}\}, \{k_{n}^{(2)}\}, \{k_{n}^{(3)}\}, c \in [1, \infty)$ satisfying $\sum_{n=1}^{\infty} (k_{n}^{(i)} - 1) < \infty$ $(i = 1, 2, 3)$, respectively. Suppose that $\{x_n\}$ is defined by (2.1), where $\{a_n\}, \{b_n\}, \{c_n\}$ and $\{d_n\}, (i = 1, 2, 3)$ are sequences in $[m, 1 - m]$ for some $m \in (0, 1)$. If $F = F(T_1) \cap F(T_2) \cap F(T_3) = \emptyset$, then

\[
\begin{align*}
(1) & \quad \lim_{n \to \infty} ||x_n - q|| \text{ exists}, \forall q \in F; \\
(2) & \quad \lim_{n \to \infty} d(x_n, F) \text{ exists, where } d(x_n, F) = \inf_{q \in F} ||x_n - q||; \\
(3) & \quad \lim_{n \to \infty} ||x_n - (PT_i)x_n|| = 0 \quad (i = 1, 2, 3)
\end{align*}
\]

Proof: Setting $k_n = \max\{k_{n}^{(1)}, k_{n}^{(2)}, k_{n}^{(3)}\}$ since, $\sum_{n=1}^{\infty} (k_{n}^{(i)} - 1) < \infty$ $(i = 1, 2, 3)$

So, $\sum_{n=1}^{\infty} (k_{n}^{(i)} - 1) < \infty$.

For any $q \in F$, by (2.1) we have

\[
\begin{align*}
||x_n - q|| & \leq a_{n_1}||x_n - q|| + b_{n_1}((PT_1^n)x_n - q) + c_{n_1}((PT_2^n)x_n - q) + d_{n_1}((PT_3^n)x_n - q) \\
& \leq a_{n_3}||x_n - q|| + b_{n_3}k_n||x_n - q|| + c_{n_3}k_n||x_n - q|| + d_{n_3}k_n||x_n - q|| \\
& \leq k_n||x_n - q||. \\
\end{align*}
\]

By (2.1) and (3.1) we have

\[
\begin{align*}
||y_n - q|| & = ||a_{n_2}(x_n - q) + b_{n_2}((PT_1^n)x_n - q) + c_{n_2}((PT_2^n)x_n - q) + d_{n_2}((PT_3^n)x_n - q)|| \\
& \leq k_n^2||x_n - q||. \\
\end{align*}
\]

And hence, it follows from (2.1) and (3.2)

\[
\begin{align*}
||x_{n+1} - q|| & = ||a_{n_1}(x_n - q) + b_{n_1}((PT_1^n)x_n - q) + c_{n_1}((PT_2^n)y_n - q) + d_{n_1}((PT_3^n)y_n - q)|| \\
& \leq k_n^3||x_n - q||
\end{align*}
\]

Lemma 3.2. Assume, by conclusion of (1), $\lim_{n \to \infty} ||x_n - q|| = d$ and from lemma (2.2), we have,

\[
\begin{align*}
||x_n - q|| & \leq a_{n_1}||x_n - q|| + b_{n_1}((PT_1^n)y_n - q) + c_{n_1}((PT_2^n)y_n - q) + d_{n_1}((PT_3^n)y_n - q) \\
& \leq a_{n_1}||x_n - q|| + b_{n_1}||((PT_1^n)y_n - q)||^2 + c_{n_1}||((PT_2^n)y_n - q)||^2 + d_{n_1}||((PT_3^n)y_n - q)||^2 \\
& \leq a_{n_1}||x_n - q||^2 + b_{n_1} + c_{n_1} + d_{n_1}k_n^2||x_n - (PT_1^n)y_n|| \\
& \leq (a_{n_1} + b_{n_1} + c_{n_1} + d_{n_1}k_n^2)||x_n - q||^2 - m_3g_1||x_n - (PT_1^n)y_n|| \\
& \leq k_n^4||x_n - q||^2 - m_3g_1||x_n - (PT_1^n)y_n||
\end{align*}
\]

which implies that $g_1||x_n - (PT_1^n)y_n|| \to 0$ as $n \to \infty$. Since $g_1 : [0, \infty) \to [0, \infty)$ with $g_1(0) = 0$ is a continuous strictly increasing convex function, it follows that

\[
\lim_{n \to \infty} ||x_n - (PT_1^n)y_n|| = 0
\]

Similarly we have,

\[
\lim_{n \to \infty} ||x_n - (PT_2^n)y_n|| = 0
\]

And
\[
\lim_{n \to \infty} \|x_n - (PT_3^n)^n y_n\| = 0 \quad \text{(3.6)}
\]

Noting that,
\[
\|x_n - q\| = \|x_n - (PT_1^n) y_n\| + \| (PT_1^n) y_n - q\| \\
\leq \|x_n - (PT_1^n) y_n\| + k_n \|y_n - q\|
\]
we obtain from (3.4) that, by taking liminf on both sides in the inequality above,
\[
d = \liminf_{n \to \infty} \|x_n - q\| \leq \liminf_{n \to \infty} k_n \|y_n - q\| = \liminf_{n \to \infty} \|y_n - q\|
\]
In addition, it follows from (3.2) that \(\limsup_{n \to \infty} \|y_n - q\| \leq d, \) thus
\[
\lim_{n \to \infty} \|y_n - q\| = d \quad \text{(3.7)}
\]

Hence, by (2.1), (3.1), (3.6) and Lemma 2.2, we have
\[
\|y_n - q\|^2 = |a_{n2}(x_n - q) + b_{n2}((PT_1^n) y_n - q) + c_{n2}((PT_2^n) y_n - q) + d_{n2}((PT_3^n) y_n - q)|^2 \\
\leq a_{n2}^2 \|x_n - q\|^2 + b_{n2}^2 \|((PT_1^n) y_n - q)\|^2 + c_{n2}^2 \|((PT_2^n) y_n - q)\|^2 + d_{n2}^2 \|((PT_3^n) y_n - q)\|^2 \\
\leq a_{n2}^2 \|x_n - q\|^2 + b_{n2}^2 \|((PT_1^n) y_n - q)\|^2 + c_{n2}^2 \|((PT_2^n) y_n - q)\|^2 + d_{n2}^2 \|((PT_3^n) y_n - q)\|^2 \\
\leq a_{n2}^2 \|x_n - q\|^2 + (b_{n2} + c_{n2} + d_{n2}) k_n \|y_n - q\|^2 - m^2 g_2 \|x_n - (PT_1^n) y_n\|^2 \\
\leq (a_{n2} + b_{n2} + c_{n2} + d_{n2}) k_n \|x_n - q\|^2 - m^2 g_2 \|x_n - (PT_1^n) y_n\|^2 \\
\leq k_n \|x_n - q\|^2 - m^2 g_1 \|x_n - (PT_1^n) y_n\|^2
\]
which implies that \(g_2 \|x_n - (PT_1^n) y_n\| \to 0 \) as \(n \to \infty. \)

Since \(g_2 : [0, \infty) \to [0, \infty) \) with \(g_1(0) = 0 \) is a continuous strictly increasing convex function, it follows that
\[
\lim_{n \to \infty} \|x_n - (PT_1^n) y_n\| = 0 \quad \text{(3.8)}
\]

Similarly we have,
\[
\lim_{n \to \infty} \|x_n - (PT_2^n) y_n\| = 0 \quad \text{(3.9)}
\]

And
\[
\lim_{n \to \infty} \|x_n - (PT_3^n) y_n\| = 0 \quad \text{(3.10)}
\]
Furthermore, we claim that \(|x_{n+1} - x_n| \to 0\) as \(n \to \infty\). In fact, by (2.1), we have

\[
|x_{n+1} - x_n| = |b_{n1}((PT_1^n)x_n - x_n) + c_{n1}((PT_2^n)x_n - x_n) + d_{n1}((PT_3^n)x_n - x_n)|
\]

\[
\leq b_{n1}||((PT_1^n)x_n - x_n) + c_{n1}((PT_2^n)x_n - x_n) + d_{n1}((PT_3^n)x_n - x_n)||
\]

Hence, it follows from (3.4), (3.5) and (3.6)

\[
\lim_{n \to \infty} |x_{n+1} - x_n| = 0 \quad (3.15)
\]

Since any asymptotically nonexpansive mapping with respect to \(P\) must be uniformly \(L\)-Lipschitzian with respect to \(P\), where \(L = \sup_{n\geq1} \{k_n\} \geq 1\), we have,

\[
|x_{n+1} - (PT_i)x_{n+1}|
\]

\[
\leq |x_{n+1} - (PT_i)^n x_{n+1}| + |(PT_i)x_{n+1} - (PT_i)^n x_{n+1}|
\]

\[
\leq |x_{n+1} - (PT_i)^n x_{n+1}| + |(PT_i)x_{n+1} - (PT_i)^n x_{n+1}|
\]

\[
\leq |x_{n+1} - (PT_i)^n x_{n+1}| + |L||x_{n+1} - x_n|
\]

\[
\leq |x_{n+1} - (PT_i)^n x_{n+1}| + |L||x_{n+1} - x_n|
\]

Consequently, by (3.13), (3.14), and (3.15), it can be obtained that,

\[
\lim_{n \to \infty} |x_{n+1} - (PT_i)x_{n+1}| = 0 \quad (i=1,2,3) \quad (3.17)
\]

This completes the proof.

Theorem 3.2. Let \(K\) be a nonempty closed convex subset of a real uniformly convex and smooth Banach space \(E\) with \(P\) as a sunny nonexpansive retraction. Let \(T_1, T_2, T_3 : K \to E\) be three weakly inward nonself asymptotically nonexpansive mappings with respect to \(P\) with two sequences \(\{k_n^{(1)}\}, \{k_n^{(2)}\}, \{k_n^{(3)}\}\) \(c[1, \infty)\) satisfying \(\sum_{n=1}^{\infty} (k_n^{(i)} - 1) < \infty\), \(i = 1, 2, 3\) respectively. Suppose that sequence \(\{x_n\}\) defined by (2.1) where \(\{a_{ni}\}, \{b_{ni}\}, \{c_{ni}\}\) and \(\{d_{ni}\}, (i = 1, 2, 3)\) are sequences in \([m, 1 - m]\) for some \(m \in (0, 1)\).

If \(P(T_1)\) and \(P(T_2)\) and \(P(T_3)\) satisfy Condition (B) with respect to the sequence \(\{x_n\}\), i.e., there exists a nondecreasing function \(f: [0, \infty) \to [0, \infty)\) with \(f(0) = 0\) and \(f(r) > 0\) for all \(r \in (0, \infty)\) such that \(f(d(x_n, F))) \leq \max_{1 \leq i \leq 3} |x_n - (PT_i)x_n|\)

\[
f(d(x_n, F)) \leq \max_{1 \leq i \leq 3} |x_n - (PT_i)x_n|
\]

Taking \(\limsup\) as \(n \to \infty\) on both sides in the inequality above, we get

\[
\lim_{n \to \infty} f(d(x_n, F)) = 0
\]

which implies \(\lim_{n \to \infty} f(d(x_n, F)) = 0\), by the definition of the function \(f\).

Now we show that \(\{x_n\}\) is a Cauchy sequence. By (3.3), we may assume that \(\sum_{n=0}^{\infty} \delta_n = M \geq 0\), since \(\lim_{n \to \infty} d(x_n, F) = 0\), then for any \(\varepsilon > 0\), there exists a positive integer \(N\) such that \(d(x_n, F) < \frac{\varepsilon}{2e^{n/2}}\) for all \(n \geq N\). On the other hand, there exists a \(p \in F\) such that \(d(x_n, F) = d(x_n, F) < \frac{\varepsilon}{2e^{n/2}}\) because \(d(x_n, F) = \inf_{x \in F} d(x_n, F)\). Therefore, \(\lim_{n \to \infty} d(x_n, F) = 0\) and \(F\) is closed. Thus, for any \(n \in N\), it follows from (3.3) that

\[
\left| x_{n+1} - x_n \right| = (1+\delta_n) \left| x_{n+1} - x_n \right| \leq \prod_{i=1}^{N_n} \left| x_{n+1} - x_n \right| \leq e^{\sum_{i=1}^{N_n} (1+\delta_i)} \left| x_{n} - p \right|
\]

\[
\leq e^{\sum_{i=1}^{N_n} (1+\delta_i)} \left| x_{n} - p \right|
\]
\[\leq d(M_n, p) \]

Hence, for any \(m, n > N \)

\[||x_n - x_m|| ^2 \leq ||x_n - p||^2 + ||x_m - p||^2 - 2 \epsilon e^{\alpha m} ||x_n - p|| < \epsilon \]

This implies that \(\{x_n\} \) is a Cauchy sequence. Thus, there exists a \(x \in K \) such that \(x_n \to x \) as \(n \to \infty \), since \(E \) is complete. Then, \(\lim_{n \to \infty} d(x_n, F) = 0 \) yields that \(d(x, F) = 0 \). Further, it follows from the closedness of \(F \) that \(x \in F \). This completes the proof.

Theorem 3.3. Let \(K \) be a nonempty closed convex subset of a uniformly convex and smooth Banach space \(E \) satisfying Opial's condition with \(P \) as a sunny nonexpansive retraction. Let \(T_1, T_2, T_3 : K \to E \) be two weakly inward nonself asymptotically nonexpansive mappings with respect to \(P \) with two sequences \(\{k_{n1}\}, \{k_{n2}\}, \{k_{n3}\} \subset [1, \infty) \) satisfying

\[\sum_{n=1}^{\infty} (k_{ni} - 1) < \infty \quad (i=1, 2, 3) \]

respectively. Suppose that \(\{x_n\} \) defined by (2.1) where \(\{a_{ni}\}, \{b_{ni}\}, \{c_{ni}\} \) and \(\{d_{ni}\} \), \(i = 1, 2, 3 \) are sequences in \([m, 1-m)\) for some \(m \in (0, 1) \).

If \(F := F(T_1) \cap F(T_2) \cap F(T_3) = \emptyset \), then \(\{x_n\} \) converges weakly to some common fixed point of \(T_1, T_2 \) and \(T_3 \).

Proof. For any \(q \in F \), by Lemma 3.1, we know that \(\lim_{n \to \infty} ||x_n - q|| \) exists. We now prove that \(\{x_n\} \) has a unique weakly subsequential limit in \(F \). First of all, since \(P(T_1), P(T_2) \) and \(P(T_3) \) are self-mappings from \(K \) into itself, therefore, Lemmas 2.3, 2.4, and 3.1 guarantee that each weakly subsequential limit of \(\{x_n\} \) is a common fixed point of \(T_1, T_2 \) and \(T_3 \). Secondly, Opial's condition guarantees that the weakly subsequential limit of \(\{x_n\} \) is unique. Consequently, \(\{x_n\} \) converges weakly to a common fixed point of \(T_1, T_2 \) and \(T_3 \). This completes the proof.

REFERENCES

